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Most models for reservoir operation optimization have employed cither deterministic optimization
or stochastic dynamic programming algorithms. This paper develops sampling stochastic dynamie
programming (S8DP), a technique that captures the complex temporal and spatial structuré of the
streamflow process by using a large number of sample streamflow sequences. The best inflow forecast
can be included as a hydrologic state variable to improve the reservoir operating policy. A case study
using the hydroelectric system on the North Fork of the Feather River ih California illustrates the

SSDP approach and its performance.

INTRODUCTION

Planning the operation of a river basin with even a sihgle
major reserveir and several downstream run-of-river power-
houses can be a complex problem for the following reasons:
{1) Future inflows are uncertain; (2) the optimal releases
from the reservoirs depend not only on their own storage and
inflows, but also on the local inflows to the downstream
powerhouses; (3) spatial correlations among concurrent
streamflows are often high, autocorrelations vary in magni-
tude, and neither the spatial nor the time correlations should
be neglected; (4) streamflow forecasts are often available and
should be considered by the operating policy; and (5} be-
cause of head effects and the daily and monthly variation in
system loads and corresponding thermal operating costs, the
value of energy produced in a hydroelectric powerhouse is

‘not a linear function of the flow through the turbines.

Most models that deal with reservoir system operations
planning assume that the streamflow forecast is error-free
[e.g., Tkura and Gross, 1984; Grygier and Stedinger, 1985].
If this was the case, future flows would be known with
certainty, and a deterministic optimization algorithm wouid
be appropridate. Many mathematical models that employ
such algorithms are available [Yeh, 1985]. Because one
seldom has a perfect streamflow forecast, deterministic
models are often used in an adaptive mode: whenever there
is an update of the forecast (often once a month), the model
is rerun, producing a new energy production schedule for the
next few months [Neto et al:, 1985]. Only the decision
pertinent to the immediate month is actually implemented.
This approach has been called paive feedback control.

An alternative to the naive feedback-control approach is
to use stochastic dynamic programming (SDP) [Loucks et
al., 1981; Yakowitz, 1982; Bras et al., 1983, Stedinger et al.,
1984]. This ambitious approach generates an operation pol-

Copyright 1990 by the American Geophysical Union.

Paper number 89WR02754.
0043-1397/90/89WR-02754%05.00

447

icy or release decision for every possible reservoir storage
state in each month, rather than just a single schedule of
reservoir releases. (Alternatively, the derivéd future value
functlfon can be used to calculate optimal release targets as
they are required.) ¥nfortunately, the representation of the
system must often be simplified to make the algorithm
computationally feasible [e.g., Saad and Turgeon, 1988],
though recent papers have proposed aliernative interpola-
tion schemes that may reduce the computational effort
[FPoufoula-Georgion and Kitanidis, 1988; Johnson et al.,
1988].

This paper develops a variation of SDP, sampling stochas-
tic dynamic programming (SSDP), that generates an opera-
tion policy taking into account all of these issues. Unlike a
sophisticated’S})P, the complex structure of the streamflow
process is not explicitly modeled in our SSDP, Rather, the
features of the process are implicitly captured with a large
number of 12-month streamflow sequences, observed or
stochastically generated, that are possible realizations of the
annual streamflow process. These 12-mopth streamflow se-
ries are called **streamflow scenarios.”” Unlike the approach
of Young [1967], SSDP derives optimal decisions consider-
ing all of the streamflow scenarios simultaneously, instead of
processing a sequence of decisions that are only optimal if
one has perfect foresight. The SSDP algorithm is introduced
in the next section, with the reservoir storage and a stream-
flow forecast as state variables, as suggested by Stedinger et
al, [1684]. For a unique streamflow scenario (perfect fore-
sight), the SSDP 'model reduces to deterministic dynamic
programming. The no-forecast.case, in which all streamflow
scenarios are equally likely, has been investigated by Araujo
and Terry [1974] and Dius et al. [1985].

The third section discusses the assignment of conditional
probabilities to streamflow scenarios, given a streamflow
forecast. A historical time series of streamflow forecasts is
employed to develop the required conditional distributions.
If this time series corresponds to the actual historical fore-
casts, the methodology captures the forecaster’s experience,
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which usually goes beyond statistical manipulation of avail-
able quantitative data. However, if historical forecasts are
not available, or the forecasting methodology has changed, it
is possible to use a simple regression eqnation to backcast
the streamflow forecast time series [Grygier et al., 1989].

The fourth section presents an SSDP case study using a
hydroelectric system operated by Pacific Gas and Electric
Company (PG&E) on the North Fork of the Feather River in
California. This system has one major reservoir with storage
capacity of 1143 X 10% acre-feet (1406 X 10° m?), located
upstream of six cascaded powerhouses. For the case of a
unique streamflow scenario, the SSDP solution is compared
to the solution of a deterministic optimization model. For the
case of multiple streamflow scénarios but no forecast, the
SSDP solution is compared to the outcome of the simulation
model actually used for planning. For the case of multiple
streamflow scenarios with forecasts, the SSDP solution is
used to estimate the benefit of forecasts in system operation.
Yeh et al. [1982] provide an analysis of the worth of inflow
forecasts for the Oroville-Thermalito reservoir system lo-
cated in the lower port;on of the Feather River.

SAMPLING STOCHASTIC DYNAMIC PROGRAMMING

Reservoir operators and planners are interested in the best
use of stored water but are faced with uncertain future
streamflows. In partieular, they need to have a strategy for
how much water to Telease over a planning perlqd The
system of interest here is a river basin with one major
YESETvoir operated primarily for electricity generation, with
other objecuves incorporated as constraints on operation.

The planning period is divided into T stages, and the state
of the system at each stage is described by a state vector.
One’ of the components of the state vector is the reservoir
storage level, Transition between stages is constrained by
the water continuity equation at the reservoir. A benefit
function is associated with each stage r and can depend on
(1) the actual release from the reservoir, R;; (2) the reservoir
storage levels at the beginning and at the end of the stage, §,
and §,,;; and (3) the local inflows throughout the basin,
described by the vector Q,. The benefit function B,(R,, Q,,
8,, Si41) translates these variables into a dollar value for
hydropower production that includes avoided thermal costs
and capacity benefits, recognizing how much of the release
would pass through the turbines and how much would spill
or go for other purposes.

A target release from the reservoir for stage #, R} (the
decision variable), is obtained by optimizing the objective
function f; = B, + By + By + -+ +8Br + fry, where
fr+1 describes the value of water at the end of stage T, the
last stage in the planning period.

General Dynamic Programming Formulation

If the matrix of local inflows {Q,, Q,+;, ' **, Qr}, wWhich
includes the inflows to the reservoir {Q,, Q,+1,***, Orh is
known, the actual release should equal the target release and
an optimal trajectory for the reservoir can be found by
deterministic dynamic programming using the recursive
equation

Fi(8) = max {B{ )+ afi+ (S+ 1} (1)

R

together with the continuity equation
Sip1=8:+ 0 — R~ e[Sy, 5141) 2

where ¢,(5,, §,;1) is the evaporation loss, « is the discount
factor, and S, is subject to the constraint Sy, = Sp =
Smex: Smn and S, are the lower and upper bounds,
respectively, on storage.

Equations (1) and (2) cannot be used if the inflows that
determine the reservoir’s evolution are unknown. Instead,
stochastic dynamic programming (SDP) can be employed to
identify a policy that maximizes the expected value of the
objective function.

To take into account the persistence of streamflows in an
SDP model, a hydrologic state variable X, is generally
added. The previous month’s flow has been the most com-
mon choice, though Gal [1979] used two preceding flows,
and Loucks has often used the current month’s value
[Loucks et al., 1981; Stedinger et al., 1984]. Recently,
Stedinger et al. [1984] suggested that using the best forecast
of the current period’s inflow as a hydrologic state variable
can be advantageous. In their case, X, = Q,. In northern
California, several sources of information, including snow-
pack, are used to forecast the snowmelt season’s (January—
July) runoff. For this situation it seems natural to let the
hydrologic state variable X, be the forecast of the remainder
of the seasonal runoff

made at month ¢ (where ¢ may be any month from January
through July).

The recursive equation that yields the optimal policy
becomes

R* QulX, Xr411Qe X,

P 3)
where, for a target release R} and an inflow Q,, the actual
release R, is given by

R - ml {max [R;kﬁ Sl + Qt - Smax - er(Sn Srnax)]:}
S+ Q;— Suin— eASy, Smin),

S8, X)) =max E {B:( Jta E [fr+1(St+l;Xz+1)]}

)

so that the minimum and maximum storage bounds are
honored by equation (2). Tn equation (3), Eq x, represents
the conditional expectation of the inflow vector Q, given X,
Note that the actual release R, equals the target release R}
when physically possible. In any case, any function of R, is
also a function of R}.

SSDP Approach

In practical applications of SDP, representation of the
multivariate distribution of Q, given a univariate hydrologic
state variable X, poses a serious problem. It is particularly
difficult to represent concisely the high but less than perfect
cross correlation among flows at many sites, as well as the
autocorrelation of flows at each site,

Alternatively one can use the SSDP approach, first used

de,
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by Araujo and Terry [1974] for the operatlon of a hydro
system and by Dias et al. {1985] for the optimization of flood
conirol and power geiieration requirements in a multipur-
pose reservoir. With SSDP, one selects M possible stream-
flow scenarios for the system to déscribe the joift distribu-
tion of reservoir inflows and local inflows. In our example, T
= 12 and each scenario is a year of observed monthly
streamflow data representing one 12-month realization of the
corresponding stochastic process. These streamflow scenar-
ios are used to simulate the reservoir’s operation and river
basin energy production for all possibie combinations of
storage and hydrologic state in each month.
Let

S.(k) reservoir storage at stage ¢, discretized into K

values (k = 1, -+, K) with S/(1) = Sy, and
5/K) = S

X.(I) streamflow forecast stage ¢, discretized into £
values (! = 1, - - -, L} with X,(1)

corresponding to a **dry” forecast and X, (L)
a “‘wet’’ forecast; .
Q,(i) vector of inflows throughout the basin at
stage f for the ith scenario (i = 1,---, M),
Ri(k, 1) target release in state (k, [) at stage ¢;
R actual release at any stage/state;
B, return at stage ¢ due to the release R, given
the initial and final storages;
filk, 1, i} benefit of reservoir operation from ¢ through
T, when the state is (k, 1) and the ith scenario
occurs; ‘
P(illy probability of the ith scenatio at stage ¢,
given streamflow forecast X,([};
PX(vll, i) transition probability from forecast X,(/) and
inflow Q,(i) to forecast X, (v);
o monthly discount factor.

For every state (k, /) and stage ¢, the target release R7(%,
{) is obtained by solving

M
max 2, PAill)| B{Ry i, k, Sy+1)
RF i=1
A
ta 2, PX(ol, Dfie1(Sevrn o )| (5
p=1

where for each RY, the actual release R, and ending storage
S,+1 are given by (4} and (2}, respectively. Once Rk, {) is
found, the benefit functions f, are updated separately for
each sequence using the equation

ft(k) l’ i) - Bt(Rh is k: S.r+ l)

L
+a 2 PXdol, Dfi 1S, v 1) (6)

v=1

to reflect the value of the release decision Ri(%, I) with each
streamflow scenario. Again, the appropriate R, and §,,. are
given by {4) and (2). This procedure is repeated for¢ = I, T
—1,-+-,1, and for each ¢ for reservoir storages k=1, - - -,
K, and forecasts l=1, L.
These calculations yield an optimal operating policy for
the reservoir in the sense that it maximizes the average

Across the M scenarios of the operating benefits achievable
by a release policy that depends on §, and X,. SSDP
{equation (5)) uses the M streamflow scenarios to describe
the distribution of flows over time and space. SDP (equation
(3)), on the other hand, generally employs a discrete approx-
imation of a continzous distribution of Q, given X,, pre-
sunedly based on the observed historical record. Both
methods employ a Markov chain model to describe the
probabilistic evolution of the hydrologic state variable X,.
The Markov model for X, in SSDP, while conditioned on the
scenario i, is necessary to avoid a one-to-orne relatmnshlp
between the forecast state variable and the scenarios.

Boundary Condition

Solution of equations (5) and (6) requites that the bound-
ary condition fr, (S7.;, v, {) be given. Initially, one can
assume that this function is identically zero. In other words,
Fre1{S7415 v, 1) = Ofor all §, v, and i. Alternatively, fr ()
can be approximated by the potential energy of stored water
Sqy; times the average value of energy, for cases where
energy values predominate. After an initial solution is ob-
tained for ¢ = 7, T — 1,---, 1, a second iteration can be
performed using the boundary condition

Fre 18741, 25 1)

M
= Z Pcenanol SIS, v, J) Vv S, v, and i

i=1

wheré ¢ identifies the **old’’ value of f; (from the first
iteration) and P qn.ri0(jli) is the conditional probability of
streamflow scenario j following scenario i. Use of appropri-
ate Pscemﬂo(iii)‘values can correspond to use of a lag 1
Markov mod€l of either annual or monthly flows. An annual
flow model in conjunction with the historical or synthetically
generated 12-month annual flow sequences could correspond
to adoption of a lag 1 Markov model of annual flows with
disaggregation to monthly values. Such synthetic streamflow
models are often used for river basin plarining [Salas et al.,
1980; Loucks et al., 1981: Pereira et al., 1984). Aliernatively,
Poonario(J1i) could be based on the month-to-month correla-
tions. In our example, little year-to-year annual correlation
was observed and Pgoonaio(jli) was just /M, so that all
streamflow scenarios were assigned the same probability.
The iterative process proceeds until the operating policy
converges.

SSDP for Other Cases

Equation (5) is applicable when the current month’s inflow
is uncertain, which makes the actual release uncertain.
When the inflow vector Q, is assumed to be known at the
beginning of stage ¢, as is often done in simulation studies
and some SDP studies [Stedinger et al., 1984], the actual
release is equal to the target and equation (5) becomes
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max [BI(RI: Qh k! Si‘+ ])
R

L M

ta S PXfll, @) D Poo (e iSis )| O
=1 . f=1

An interesting case is when M = 1 so that there is only a
single streamflow scenario. Then both equations (5) and (7)
reduce to deterministic dypamic programming and produce
the optimal release sequence for that streamflow scenario
and the given boundary condition fri( ).

Another interesting case is when L = 1 so that the
streamflow forecasting capability is neglected and all scenar-
ios are equally likely. In this case, R} is found by solving the
simpler problem

1 M
max | = 2 [BAR,, i, k, Se1) + afs s 1(Se4 15 1] ®
Ry i=1

with R, given by (4), while the cost functions should be
updated ysing

B ft(k,? i) =B!(Rh i$ k: St-l- 1) + aft+l(st+h f)

Again, if the inflow vector Q, is known at the beginning of
stage t,,cgpation (8) should be replaced by

M
o
max | ByRs, Qu, k, S;+ )+ — 2 Fie1lSea1s D) (9)
R . Mi=1

with 5,y subject to Spin = Sp4y = Shax-

The decision variable in equations (3), (5), (7), (8), and (9)
was the target release. Similarly, it could be the target
storage at the end of the month §7%, . In this case, the actual
release would not be calculated through equation (4) but
through

R, = min {Rpay, max {Rpin, $; + @~ SF+1— edS,, SE 01

where Ry, and R, are bounds on the reservoir releases.
The ’actual end-of-month storage would still be given by
equation (2).

Advantages of SSDP

The advantages of the SSDP methodology include the
following:

1. The traditional SDP approach fits marginal distribu-
tions to the key flows in each month or period, and models
the autocorrelation structure of those flows by a Markov
process. The resulting conditional distributions are dis-
cretized, and the Markov process is then described by the
corresponding Markov chain. Use of SSDP avoids the
imposition of a specific streamflow model structure; in
particular, the joint distribution of flows used in the compu-
tation of the benefit-to-go f{ ) is described by streamflow
scenarios, which can represent not only the empirical mar-
ginal distribution but also the empirical joint distribution of
the within-year flows. SSDP avoids the distortion that re-
sults from discretizing the fitted continuous inflow distribu-
tions and then describing the persistence of those discrete
values by a Markov chain, a process almost certain to

underestimate the severity of droughts. Moreover, the SSDP
approach can incorporate a lag | Markov model of the
year-to-year persistence of annual flows; the implicit
Thomas-Fiering monthly streamflow model incorporated in
most SDP models yields very little correlation between
successive annual flows.

2. In situations where flows at a number of sites in a
basin are jmportant, the SSDP methodology readily incor-
porates the flows for all such sites if their values are available
for thé historical record period. Moreover, without increas-
ing the dimension of the hydrologic state variable (or using
none at all), it captures the entire joint empirical distribution
of the within-year flows at all sites.

3. The SSDP methodology attempts to derive the opti-
mal policy for the selected streamflow scenarios using the
specified state variables. Thus, in theory, trial-and-error
derivation of such a policy through simulation of the same
scenarios could not vield a better result.

PROBABILITY DISTRIBUTION OF THE STREAMFLOW
SCENARIOS

To implement the SSDP algorithm, the following ques-
tions must be answered:

1. Given the forecast for the remainder of the snowmelt
season JX,, what is the probability of P,(il{) of the ith
scenario, i.c., that the inflow will equal Q,(/)?

2. What.is the probability distribution of the forecast
X, that would be made next month given that inflow @,(7)
occurred in month ¢ when the forecast X, was made?

These probabilities can be precomputed and stored so that
they need not be recalculated in each SSDP iteration.

A multivariate distribution for X,, Q,(i), and X, will be
employed, at least implicitly, to find the above probabilities.
Let streamflow scenario i have unconditional probability
p(i). If the M scenarios correspond to all of those in an
M-year historical record, then p(i} = 1/M. The computa-
tional requirements of the algorithm could be reduced,
however, by deleting scenarios that are very similar to
others, and*giving the remaining scenarios the combined
unconditional probability. For example, the scenarios might
be ranked by snowmelt season runoff; then, many of the
scenarios near the median might be deleted while neighbor-
ing scenarios are given the combined probability.

The conditional probability of scenarie / given X, can be
calculated using Bayes theorem based on the actual inflow
that occurs with sequence i between month ¢ and July

July

Y{i) = 2 0.6)

T=t
The probability assigned to scenario § is

XYY pli
PIE) = Mp[ () pli) 10)

20 PLXSY(Np())
i=1

where p[X,1¥,] is the probability density function (pdf) of the
forecast given the actual inflow Y,; this pdf can be calculated
directly by regressing X, on Y, and assuming normal resid-
nals, or from the bivariate distribution of X, and ¥,.

Also needed is the conditional distribution of X, given
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both X, and @,. (Conditioning on @, is especially important
in California in months such as May and June when the
inflow will likely have a critical impact on the value of the
residual snowmelt forecast X, | made at the beginning of the
following month.) Let X, (v) be the L discrete values of the
forecast in month ¢ + 1 and pX,,,(v) the unconditional
probability assigned to each. Then, for each sequence i,
using Baves theorem, the conditional probability of each
X;+1(v) would be

plX;, QX s ()] pX, 4 1(v)

PX(v X, Qr(f)) =

L
2 PLXn QN X, 4 (DNPX 4 ()
J=1

(1)

Here p[X,, Q,1X,.] is the conditional joint pdf for X, and Q,
given the future forecast X,..;; it can be calculated from the
multivariate density function for all three [Pegram et al.,
1988]. Alternately, the probabilities PX,(v!X,, 0,) of the
discrete forecasts X, (v) could be calculated by deriving a
conditional pdf for X,,; by regressing on X, and @, and
integrating over intervals asscciated with the selected dis-
crete values of X,.,. Born [1988] has shown that there is
relatively little difference between these two approaches.
Such an option is not attractive for the computation of
P (i1X,) because the values of Q,(i) are those historically
observed and thus are irregularly spaced.

APPLICATION OF SSDP To THE FEATHER RIVER

River Basin Representation

Figure 1 shows a schematic representation of the North
Fork Feather River hydroelectric system. The energy gen-
erated by the 10 powerhouses in any month is a function of
the local inflows (11 inflow peints in Figure 1} and of the
releases from the nine reservoirs. Table 1 gives the storage
range for each reservoir and their useful storage as a
percentage of Almanor’s; the full useful storage in Lake
Almanor is approximately 1.5 times the mean annual flow
into the reservoir.

The storage capacity of Lake Almanor overwhelms that of
the other reservoirs, In our application of SSDP the primary
state variable §, is the Lake Almanor storage and the
decision variable is the target release from Lake Almanor in
each month. Mount Meadows, Butt Valley, and Bucks
reservoir storages are not state variables. It is assumed that
the monthly carryover in each of them, divided by the
corresponding useful storage (denoted A;), is equal to the
corresponding A for Lake Almanor.

Given the release from Lake Almanor and the 11 local
inflows, it is possible to estimate the energy produced in the
Feather River system by routing the flows from upstream to
downstream, maximizing the value of the power generated
when there are alternate routings. A simple simulation model
performs this calculation, taking into account the water duty
(energy generated per unit of water) associated with each
powerhouse as well as the upper and lower bounds on the
monthly flows due to the capacity of the hydraulic convey-
ances and to fish releases. The simulation model also takes
into account the constant ratio of flows through Caribou 1
and Caribou 2 powerhouses and the variability of the water

D v Mt Meadows

[D>—()

» v Lake Almanor
@

[/ et

. Belden Qak Flat
m v Roack Creek
o

Bucks Lake v a

Fig. 1. Schematic representation of the Feather River.

duty of the Bult Valley Powerhouse as a function of the
storage level in Lake Almanor. The other powerhouses have
constant heads.

The simulation model also checks {and informs the opti-
mization algerithm) whether any powerhouse fails to meet
the minimum energy requirement. This requirement depends
on the installed capacity and on the minimum capacity factor
of each powerhouse. The minimum capacity factor for the

TABLE 1. Reservoir Storages

% of
Reservoir Maximum  Minimum  Useful  Almanor

Mount Meadows 24 2 22 2
Lake Almanor 1143 40% 1103 100
Butt Valley 50 2 48 4
Belden 2 2 1] 0
Rock Creek 4 4 0 0
Cresta 4 4 0 0
Poe 1 1 [i] 0
Bucks 105 35 70 6
Grizzly i i 0 0

In thousands of acre-feet {TAF).
*The operational minimum storage of Lake Almanor is more than
40 TAF because of recreational concerns.
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TABLE 2. Subjective Coeflicients Used in Comparison of SSDP
With HYSS Solutions

Month c;
January 1.25
Februoary 1.05
March 0.90
Aprit 0.94
May 0.98
June 1.20
July 1.32
August 1.34
September 1.30
October 1.15
November ) 1.00
December 1.10

summer months (about 10%) is different from the factor for
the other months (about 8%) because of the shape of the
electric system’s load-duration curve.

Comparison With Deterministic Optimization

Deterministic nonlinear programming models such as
PG&E’s HYSS {Tkura and Gross, 1984] need not adopt the A
simplification, which is the price paid by the stochastic
model to avoid the “‘curse of dimensionality” (the high
computational cost of models with multidimensional state
variables), The following experiment was done to evaluate
the effect of the A simplification:

1. The HYSS model was run with the mean monthly
inflows for the Feather River. The objective function was
simply 2,c,G,, where G, is the total energy generated and ¢,
are the subjective coefficients in Table 2, which represent
relative energy values in different months.

2. The SSDP model was run for the same 12-month
streamflow scenario, in which case the SSDP model reduces
to an approximation of the deterministic model. The approx-
imation arises because of the A simplification.

Figure 2 shows a comparison of the resuits. The evolution
of storage in Lake Almanor is nearly the same, indicating
that the two policies are practically equivalent. Indeed, the
objective function values for the HYSS and SSDP policies

1000

&= SSDP
——0—  HYSS

800

7\
AR

700 o \

Lake Almanor Storage (TAF)

. N

300 U

400 T T T T t T T T T T T T
Jan Feb Mar Apt May Jun Jul Aug Sep Ot Nov Dec

Fig. 2. SSDP versus HYSS experiment.

Annual Benefit

Best Triel & Errer

Minimum Lake Almaror Storage (TAF)

Fig. 3. Sensitivity study results,

respectively were equal to 4395 and 4391, a difference of just
0.09%. This experiment demonstrates that the A simplifica-
tion should not cause any noticeable degradation in the
quality of the derived operating policy.

No-Forecast Case

The SSDP algorithm was applied to the case of multiple
streamflow scenarios but no-forecast hydrologic state vari-
able using equation (8). It was assumed that the monthly
inflow to Lake Almanor is not known until the end of the
month. The target release is selected at the beginning of each
month, based on the state of the reservoir and that target is
assumed not to change, regardless of the actual inflow in the
month. The minimum capacity factor in each month was
checked to prevent any l.ake Almanor release that was not
sufficient to meet the minimum capacity factor requirement
for all powerhouses and streamfiow scenarios.

The model, was run iteratively using the 57 available
historical 2-month streamflow scenarios and 35 storage
states. In the first iteration the boundary condition
Fre1(8 7+, ) was the potential energy of the stored water
(storage times an estimated total of the average water
duties). In subsequent iterations the boundary condition was
the expected future benefit at the beginning of January from
the previous iteration. The value function and release policy
converged after the second iteration.

The model was run several times to perform a sensitivity
study on an operational constraint at Lake Almanor. In
general, Lake Almanor is not drawn below an assumed
target minimum level. Obviously, the higher this target fevel
is, the smaller the reservoir operating range. This change in
flexibility has a monetary value, because if load is not met by
hydropower production, it must be met by thermal genera-
tion.

Sets of optimal release rules were generated with the
SSDP model for various minimum storage levels. These sets
of rules were then applied in the daily simulation model
actually used for planning, which incorporates detailed legal
requirements. Figure 3 shows the average annual generation
benefits calculated by this simulation model for a typical set
of power values.

Also shown in Figure 3 is the point corresponding to the

50 150 250 as0 450 550 £30
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TABLE 3. Correlations Between Seasonal Flows Y, Forecasls
X,, and Monthly flows (J,; State Variables; and
Distributions Used to Compute P,(ilX,)

State P(ilX,)
Month  p(Y,.X) p@nX) o(Q0,~) Variable Based On
January 0.72 0.65 0.60 X, Y, X,
February 0.73 0.50 0.5% X, Y, X,
March 0.82 0.62 0.59 X, Y, X,
Aprit 0.89 0.75 0.55 X, Y, X,
May 0.83 0.82 0.79 X, Q0
June 0.94 0.93 0.91 X, Y X,
July " 0.91 Qi1 Q@i
August 0.91 @ 0,40,
September e e . 0.9 [0 010,
October e e 0.62 none .-
November e .- 0.50 none
December e e 0.48 none

original rule curve used in the simulation model. This rule
curve was developed through a difficult trial-and-error pro-
cess. The SSDP model was able to develop a slightly better
rule, as well as rules for other minimum storage levels, with
much less time and effort.

SSDP With a Hydrologic State Variable

The SSDP algorithm with a hydrologic state variable was
also tested. At PG&E and other western U.S. water man-
agement agencies, it is customary to use linear regression
models to develop forecasts X, in month t of the ¢
through-July seasonal runoff Y,. These forecasts often make
use of previous streamflow and precipitation values, current
snowpack water content, and other information. Historical
forecasts were available for the Lake Almanor inflow for
19501984, allowing the use of equation (10) to develop
conditional probabilities P,(ilX,) for each scenario i for
which historical forecasts were available in the months of
January-April and June. For May, equation (10) was em-
ployed with May's flow @, replacing ¥, because a higher
correlation was observed between Q, and X, than between
¥, and X,. For the months of July-September, the previous
month’s flow Q,_, served as the hydrologic state variable;
s0, 0, and @,_, replace ¥, and X, in equation (10). Finally,
for the months of October-December, since forecasts are
not developed and the month-to-month inflow correlations
were more modest, no hydrologic state variable was em-
ployed. These decisions are summarized in Table 3.

The marginal (unconditional) probabilities computed for
the various streamflow scenarios, using the conditional
probabilities from (10) with the given pX(v), deviated ap-
preciably from the expected value of 1/M, particularly for
the January-June period. This deviation was found to be
caused primarily by the historical streamflow record being
substantially longer than the historical forecast record [Born,
1988]. To correct the anomalies, the prior probabilities p(i)
used in equation (10) were adjusted using a first-order

TABLE 5. SSDP Results With and Without Forecasling
Minimum Value of Energy
Storage Value of
(TAF) With Without forecasts, %
Set |
500 3109.3 3103.6 0.2
900 2927.5 2916.1 0.4
Set 2
500 7961.4 7844.4 1.5
700 7753.3 7587.3 2.2
800 7485.6 7311.4 2.4
W) 6850.0 6680.9 2.5

Newton scheme until the resultant marginal probabilities for
the scenarios closely approximated /M. As a result, the
unconditional mean and variance of the flows, and the
month-to-month correlations, very closely matched the his-
torical values.

In all months when the seasonal forecast X,.; served as
the next month’s hydrologic state variable, both X, and @,
were found to be significant at the 5% level in a predictive
linear model for X,,1; so both were employed in equation
(11) to calculate the transition probabilities PX,(zIl, i}. When
Q, served as the next month’s hydrologic state variable, and
Q,(7) had been observed in month 7, then the transition
probabilities PX,(vll, i) corresponded to interpolation be-
tween the two discrete values of the (), state variable that
bracket Q,(i) because fr ( ,», ) was only computed for
v=1,++-, L (rather than 1, - - - , M). (With traditional SDP
formulations such interpolation is generally not necessary
because (J, is restricted to only the allowable discrete
values.) In the test case, L = 5, corresponding to standard
normal quantiles of =1.72, =0.76, and 0 with probabilities of
0.107, 0.245, and 0.296, respectively.

The SSDP model was run with and without forecasts for
two sets of cases, using the subjective objective function
coeﬂicients*c} in Table 4. The results are summarized in
Table 3. In the first set of cases the ¢, coefficients were all set
to one; thus the objective was to maximize the energy
generated by the Feather River system. The difference
between the energy production levels obtained with and
without forecasting is small, less than {.4%. In both cases
the SSDP release rules generally kept Lake Almanor’s
storage level low so that large winter and spring inflows
could be stored and used to generate energy when spills
around the powerhouses are less likely. Moreover, about
half of the inflow in the basin enters the system below Lake
Almanor and hence is essentially uncontrollable on a
monthly time scale,

In the second set of cases the objective function coeffi-
cients reflect projected future retative energy values ina year ,
with average hydrologic conditions (neither wet nor unusu-
ally dry). As can be seen, energy in May is expected to have

TABLE 4. Subjective Coefficients Used to Investigate the Value of Forcasts

Set Jan. Feb. March Aprii May

June July

Aug, Sept. Oct. Nov. Dec.

1 1
2 2,

.0 L0 1.0 1.0 1.0 1.0 1
12 L.56 2.07 183 058 L.66 3.1t 3.09 309 324 317 288

1.0 1.0 1.0 .0 1.0 1.9
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relatively little value because of plentiful hydroelectric en-
ergy available in that month; summer and fall energy prices
are relatively high, reflecting relatively low natural flow
levels and relatively high energy demands, Thus it is advan-
tageous to store spring inflows in Lake Almanor and gener-
ate epergy in the summer and fall, provided that the in-
creased value is not offset by lost value from (1) spills at
Almanor that must bypass some powerhouses or (2) spilis
below Almanor when unregulated inflows are larger than
anticipated. (Flood control for communities in California’s
Central Valley is provided by the state’s large Oroville
Reservoir downstream from PG&E’s hydroelectric system.)
As can be seen in Table 5, with the realistic energy value
function, the value of using forecasts ranged from 1.5 to
2.5% depending on the minimum Lake Almanor storage
level. Over the range considered, the higher the minimum
storage, the greater was the value of forecasts. (For mini-
mum storage levels above 900 TAF the useful storage was
insufficient to provide required flows to meet the minimum
capacity constraint). In general, the additional expected
value exceeded one million dollars per year for this basin.

CONCLUSIONS

This paper has explored the use of sampling stochastic
dynamic programming and extended previous descriptions
of the approach by the introduction of a hydrologic state
variable and the associated conditional distributions for the
various streamflow scenarios and values of future hydrologic
state variables. Sampling stochastic dynamic programming
as developed here employs the empirical multivariate tem-
poral and spatial streamflow distribution for a basin, allow-
ing the detailed simulation within the optimization model of
PG&E’s complex Feather River hydroelectric system. In
this regard, sampling SDP has significant advantages over
the traditional SDP approach. Because sampling SDP em-
ploys selected historical or synthetic streamflow traces, the
actual multimonth persistence of streamflows can be cap-
tured in the calculation of the expected benefits.

The sampling SDP approach has been useful in PG&E’s
hydropower planning because it can generate efficient oper-
ating policies for alternative and proposed hydroelectric
system configurations faster than the traditional trial-
and-error deviation of rule curves to prescribe reservoir
operations. The inclusion of the use of forecasts in the
prescription of reservoir releases c¢an allow for the develop-
ment of even more efficient operating policies. However, in
our examples, the value of seasonal forecasts depended on
the objective function employed and the system configura-
tion. When we attempted simply to maximize the average
energy produced, the optimal policy generated without fore-
casts operated almost as well as the policy that used fore-
casts. We also considered a case where energy generated in
the summer and fall had increased value over spring gener-
ation, as it does in northern California. Then forecasts were
of value in planning reservoir operations that attempted to
transfer energy into the summer and fail without keeping
Almanor so full that large inflows resuit in avoidable spills
around some hydroeleciric powerhouses.
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