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ABSTRACT
The most usual approach to the calculation of x{T), the
annual maximum dailly streamflow associated with recurrence
interval T, is to fit a probability distribution to a

set of observations of annual maxima.

The choice of the probability distribution is often based
on asymptotic results. This model selection criteria is
investigated through the evaluation of the errors on the
estimation of x{T) for a Markovian daily flow stochastic

process.

The design of spillways and/cr flocod control storage

requires thecalculaticn of the T flood hydrograph, rather
than just the peak value. Questions regarding the evolu
tion of reservoir storage could be easily solved if a
large number of daily streamflow sequences were available

to be used in the evaluation of the frequency of failure
of each temptative design. The utility of stochastic
daily streamflow models is discussed, particularly thé
guestion of how to reduce the computer time necessary to

generate a large number of synthetic daily secuences.

* “Presented at the Symposia on Statistics in Honour of Professor
V.W. Joshi's 70th Birthday, University of Western Ontario ,
Canada, May 27-31, 1985.
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1. INTRODUCTION

Hydrologists are usually called to colaborate in the design
of hydraulic siructures aimed to support strecamflows up to a
critical event, the so called "design flood". When the failure
of the structure can have catastrophic consequences, the design
flood is often calculated through a hydrometeorological approach,
which maximizes the previously observed storms with the purpose
of reaching an event that "with all likelihood” will never happcm.
It is interesting to note that this "upper limit" for storms is
called the probable maximum precipitation,aiummgh no probability
calculation is used in its derivation. Descriptions of this
methodology for applications in temperate regions are easily
found (for example WMO 1973) but for tropical regions there are

few references, as for example the work of Myers (1981).

The design flood can also be calculated through the flood
fréquency analysis, which is the subject of this paper. Flood
freguency analysis is a set of procedures that make use of sta-
tistics for assigning the exceedence probability to each flood

event.

In sone engineering problems one only need to define the
peak flow x(T), as for example when designing a levee. Most of
the work done in étatistics deals with this kind of problem ,
namely how to calculate the flow that will be exceeded in any
year with probability p. Engineers like to call T29_1 as  the
"recurrence interval™ in years, as this is the expected time
interval for the ocurrence of the first flow larger than x({(T).
For major hydraulic structures T is sometimes chosen to be  as
large as 10 000 years. The most usual approach for the calcu-
lation of x(T) is to Ffit a probability distribution F{.) to a
set of observations of m annual maxima {X1,X2, ey xm} and

get the estimate X(T).
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Several questions may be raised in connection with this
approach:
a) What is the population probability distribution from
which {x1, Xy .erml was sampled?



b} What is the probability distribution associatedwith the

smallest mecan square error (or mean absolutce crror} for

the estimator X(T)?
c) Bow large is this error?

d) what is the probability of under-designing, that 1is ,
P(X(T) < x(T))?

The answer to questions (a) and (b) may be different because
the exrors on the parameter estimation of the population dis-
tribution may be so high that the use of a wrong distribution,
possibly with few parameters, is perhaps the best choice.
There are several results available in the literature aimed to
answer questions (c) and (d) when the population distribution
is known, that is, . when the estimation procedure is the only
source of error (for example Kottegoda {1980)). However results

are not easily available when the population distribution 1is

unknown.

The first asymptotic distribution is often used as an ap-
proximation for the unknown population distribution because of
its importance in the theory of extreme values. One of the main
results of this theory states that if the random variables Yi
are independent and with a common distribution of the exponen-
tial type, then the maximum defined as X= max {Y1, Yor ooy Yn}
will be such that its probability distribution will behave as

(Gumbel 1958) :

2im Fx)= exp [- exp (=¥ (x—p)}], (1)
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This asymptotic distribution, also called Gumbel, is still  valid
even when the random variables Yi are weakly dependent,as when
the , correlation between Yi and Yi%k goes to zero, with incres-
) Eﬁé kX (Cramer and Leadbetter, 1967) . However there are proba-
bilitj-distribﬁtions for Y with no asymptotic distribution
for X: or else, associated to the second {also called Frcchet)

and third (also called Weibull)} asymptotic distributions, rather

than to the first.



Since most of the probability distributions used in Hy-
drology are of the exponential type, as for cxample the normal
log-normal and the gamma, it i51uﬁorsunﬁﬁblexﬁnrthe Gurbel distri
bution seems to be a suitable approximation to the unknown pop
ulation distribution of X. The term "approximation" is intro-
duced because equation 1 is used for finite n {(up to 365) and
also because the daily flows ¥, are not .identically distributed
Section 2 will discuss the question of how good is this approx

imation.

The other usual approach to the selection of an approximate
probability distribution of X, not necessarily confined to the
set of the asymptotic distributions, is to examine a number of
candidate distributions and pick up the one that most closely
fits the data. Obvicusly the goodness of fit measure has to

take into account the number of parameters of each distribution .

Comparison studies have been made with data from a great
number of streamflow gauges aiming to get a standardized dis-
tribution of annual maximum. In the United States the Water
Resources Council (USWRC, 1967) suggested the use of the log-
Pearson III distribution and later on furnished further guide-
lines regarding the estimation procedure. (USWRC, 1977). This
recommendation created a great desl of controversy. For example
Wallis (19817) proved that the 500-year-flood divided by the
drainage area may vary over five orders of magnitude for stream

flow gauges located in a small hydrologically homogeneous region

In England (N.E.R.C., 1975) six. different goodness of fit
measures led to inconclusive results. The final recommendation
of the british study was to use a specific probability dis-
tribution for each regdon of Great Britain. These distributions,
the so called - "Regional Growth Curves™, have also been
"subject to a wel; founded criticism (Hosking et al, 1985).
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6ne ﬁay wonder if goodness of fit is a reasonable criteria
_féﬁ selecting an approximation for the annual maxima probabil-
ity diétribution. In fact, a good fit is valid only in the
range of the annual maximum for which there are observations



available, usually associated with cmall reccurrence intcervals.
However, what usually really matters is the unknown fit for
larger T wvalues. Houghton (1977) and Morecira (1983} have
shown that the best "interpolating distribution" ({the best f{iy
is not necessarily the best "extrapolating distribution” {the
best estimator of x(T), T large). In section 3, it is shown
how the minimization of the mean absolute error of i(T} may bhe
used as an alternative criteria for selecting the approximate

probability distribution of the annual maximum.

So far only the question of how to estimate the peak flow
x{T) has been mentioned. However there are some engineering
problems which require also the inflow volume for different
durations. For example, the sizing of the flcood storage in a
man made reservoir. In this case the operation rule of the
reservoir is such that if any water is in the flood storage,
the operation target is to empty the storage as fast as pos-
sible, constrained by an upper limit on the outflow, beyond
which downstream flecoding would happen. There is always the
possibility that the inflow volume for a particular duration
is so large that the attenuvation in the flood storage is not
enough to avoid downstream losses. The problem is how to cal-
culate a flood storage with a failure recurrence interval of T

(typiéal value, T.= 50 years), for a given upper limit on the

outflow rate.

A similar problem is the design of a spillway. In this
case, it is possible to attenuate the flood in the so called
"safety storage", which is situated above the flood control
storage. Whenever there is some water in the safety stora%e,
the operation rule is to empty it as guick as possible. There-
fore the only limitation tr: the outflow rate is set by the hydraulic condi
tions of the spillway and it will not be constant. Furthermore,
as this is an operation reauired for dam protection, no
" “congtraints regarding downstream flooding are taken into ac-
—coun%ﬂméanwhile the safety storage igibeing voided. The prob-
lem is how to calculate jointly the spillway capacity and the

safety storage for an overtopping of the dam event with the



recurrcence interval T. If the dam is carthfilled, overtoppirg
will likely mean dam break with caltastrophic downstream cf-
fects, and T is therefore assumed very Targe, say 1000 or 10000
years. Obviously the larger is the spillway capacity the

smaller is the safety storage, and vice-versa.

Questions regarding the evolution of rescrvoir storage
could be easily solved if a large number of daily Zflow sequences
were available to be used in the evalualtion of the frequency
of failure of each temptative design. Obviously these frequen

cies would only be recasonably close to the respective probabil

ities of failure if the number of simulations were at least
one ordexr of magnitude larger than the recurrence interval
being considered. For flood control calculations this means

that the number of daily sequences should be of the order of
‘500 and for spillway design of the order of 100 000. But the
stream records are seldom longer than m=100 years. This pﬂa&mé
can be circunvented if a daily stochastic streamflow model is

used to produce as many synthetic sequences as necessary.

Several features of flood volume modelling and daily
streamflow modelling are focused in section 4, in particular
the gquestion of how to reduce the computer time necessaxy to

generate a large number of synthetic daily sequences.

2. THE FIRST ASYMPTOTIC EXTREME VALUE
PROBABILITY DISTRIBUTION (GUMBEL)

Let us assume that the non-stationary of the daily flow
process can be neglected during tﬁé flood season, that lazts
for n days. In this case it is easy to get some insight on
how the Gumbel distribution approximates the true distribution
of annual maximum of daily streamflow. Initially let's accept

the very unrealistic assumption that the daily streamflows

. X1, }é, ey Yn are independent random variables. In this case

the probability distribution of X = max {Yi} ig simply

.-

Fx(x;n)

193
P(X < x) =P(r:11 Y, <X = (R (x)31 " (2)



e rie7e) .

Figure.1 shows the graphs of Fx {x,n} for diffcrent n valucs
for the case that the Yi are normally d%stributed with E(Yi}z
var Yi) = 1, ¥i. The horizontal axis is such that the Gunliel
distribution would plot as a straight line. That is, ilhe vari

abkle g is such that

g = &n (-2&n (Fx(x;n) (3}
The main facts to be observed from Figure 1 are:

a) The curves cannot be approximated by straight lincs,
meaning that the use of the Gumbel “distribution would
result in error. Of cocurse this has been known at lcast
since Gumbel's (1958, pp. 219) comment about a graph
similar to Figure 1 (Gumbel's book Figure 6.2.1(3), which
incidentally has a minor mistake): "For the normal
distribution, however, the approach is very slow. The
curves for n=100, 200, 500 and 1000 taken from Tippet
(1925) depart sensibly from a straight line, if we ¢oO

outside the interval 0.05 to 0.95".

b) As typical streamflow records are no longer than 30 yoars,
straight lines fitted to the empirical probability dis-
tributions of X, in the range T=1 to T=30, will tend to

" overestimate x(T), for large T values.

Figure 2 shows the graphs of Fx(x;n) for different n values
for the case that the Yi are log-rormally distributed with
E(Yi)=var(Yi)=1, ¥i. Again the curves can't be approximated
by straight lines, but opposite to the case of Figure 1, the
use of the Guumbel distribution will tend to 1Hﬁeremjﬂate“x(%),
for large T values. Furthermore it should be noted that the
vertical scales used +'in Figure 1 and 2 are different, meaning
that the marginal distribution of daily flow Yi is an extremely

relevant aspect to be considered when estimafing ¥ {T) . (Grigoriu,

PR A -

“.« _The differences between Ficures 1 and 2 are due to the tail

hehaviour of the two distributions. Although the normal and



the log-normal distributions are of the exponcntial type,
(Gumbel, 1958, pgs. 119,120,136,146), Fx(x,n} will converge
to the Gumbel distribution with growing 'n in very different
ways. In fact the normal distribution is "light-tailed", in
the sense that its density function goes to zero, for incrcasing
y, more rapidly than an exponential density function. The
converse is true for the log-normal distributicn, which is
called as "heavy-tailed"”. More precisely, it can be said that
if the conditional mean excedance defined as E(Y—y]Y>y) is a
decreasing (increasing) function of y- at least for sufficicntly
large y- then the probability distribution function of Y is
light (heavy) tailed (Bryson, 1974).

Now let's assume that Yi’ the streamflow on day i, is such

that

Yi = exp (Wi) and
W, =a+y (W, ) —a) + 8 (1 -y")°"° N, (4)
where
Ni is a standard normal and E(NiNk) = {:é, k £ 1
1, k = i

We can't expect that this simple Markovian process will
actually resemble daily streamflows, but it is useful to get
some insight on how the time persistence of the process affects

the use of the Gumbel distributicon, as an approximaticn, for

extreme values.

Obviously the marginal distribution of Yi is log-ncrmal and

the following properties can be easily derived

E(Y,) = exp (a + B2/2) (5a)
véf(Yi) = exp (2a+82) exp(B®-1) (5b)
skewd(¥,) = (B/¢)® + 3(8/c) (5¢)
'c?rr{'fi,“Yiypk) - exp (82Y%) -1 (5a)
E(Y;|§i_1) = exp[8” (1-v?) /2+a (1-¥)}] y1_1 (5e)
Var(YiIYi_1) = lexp(2(8 (1=v2) + a{1=¥))) + : (5 %)

—exp (8% (1~y?) + 2 a{i-y))] in



Assuning a=tn 27 "752-0.35,8=(4n2) *7°=0.82 aid }:{RI‘]Z]—"} $11(140.95) =

0.96, it is possible to show, by back substitution in ihe
above cguations, that E(Yi):var(yi)xi, skew (Yi) = 4 and
corr (Yi’Yi+1)= 0.95. These values are Lypical for daily

streamflow time series of larcge rivers. The regression of Yi
given Yy is practically coincident with the straight line
0.95 Yi_1 + 0.05 for values of Y51 larger than 0.5 and the
autocorrelation is practically coincident with 0.95k ’ for

values of k smaller than 10.

The stochastic process defined by (4) is heteroscedastic,
which is a feature in agreement with the hydrological expericnoz
that the largest is the streamflow today, the less precise will
be the flow forecast for tomorrow.

The probability distributicn of X=max {Yi} is
i

where c?n ie¢ the n-variate density function of the standard nor--

mal. ‘This n—fold integral is very difficult to be obtained

for large n values.

2 first possible approximation for FX(x;n) is (Rosbjerg,
1979)
n
Fx(x;n)- F1(x;n) = P(Y1 < X) i22 P(Yi < X I Yi—1 < x) =

={§1 (sme-—cnt)]2—1'1[§2 (EEEX—Q . Eanua ; Y”n—-'i n o> 2

In short this approximation is

where @1 and @2 are the standard normal probability distri-

butions respectively for the univariate and bivariate {with



correlation coefficicent y) cascs.

A second possible approximation for Fx(x;n) is to assume

that the upcrossings of the {Yi] process with regard to the
threshold level x, for large x, is a Poisson process. AS such
the waiting time between upcrossing (XK) is exponentially dis-

tributed with mean rate (Grigoriu, 1979):

nix) = P(Yi+1 > X, Yi < X)
i xX-o &n o 2n X-—o
or simply
That is

FK(k) f 1 ~ exp ({¢2 - @1)k) {9)

But

P(X<x) = FX(x;n) = P(K>n) f 1 - Fp(n) = exp ({e, - @ﬂrﬂ

In short, the second approximation to Fx{x;n) is

F, (x;n) = exp ((&, - <I>,I)n) (10}

A third approximation can be obtained through the Monte
Carlo approach, using (4) to generate s sequences {Y,i,Yz,,.,,Yn}jji:i,s.
Since each sequence is associated with one extreme value obser
vation, a sample (xq,kz,...,xs) can be produced. Therefore it
is possible to estimate FX(x;n) by F3(x;n), the empirical prob

ability distribution of X. In fact F3(X;n) converges ﬂ)f&(xnﬂ

N .
"with growing s.

-+ . Figure 3 shows the graphs of the approximations for n=100 days,

which is a typical duration for the flcod scason. The graph

(=1



of the second approximation was not plotted hecause it falls

very close to F,(x;n}. The third approximation,which is prac-

1
tically coincident with Fx(x;n) for T <.1000, was obtained for
s = 10° "flood scasons". The descriptors of the X  variable

are, according to the third approximation

E(X)=3.13 , std.dev. (X)=2.23, skew (X}=2.74, Kurt (X)=18.72

These values are very different from the descriptors of
the Gumbel distribution (skewness of 1.14 and Kurtoses of 5.4).
Also for comparison it is displayed the curve for the independent

process, which is exactly calculated by Eq. 2.

It can be noted in Figure 3 that the time persistence of

‘daily streamflows does not play a role as relevant as the marginal
distribution (see also Figure 1), although the time persistence

‘can't be dismissed in this particular case. It should be noted

that other Markovian processes with mederate auto~correlation
coefficients may eventually be treated as independent, as far

as extremes are concerned (Grigoriu, 1979).

The second comment on Eﬁguna3 is that the Markovian approx
imation may lead to significant error on the estimation of X(T).
For example, the error on the approximation of x(1000) in this
particular case was of the order of 12%. This isn't too much
when one thinks aboutall other sources of uncertainty usually
found in éhe study of floods. But since we are talking about
an avoidable error, the recommendation in this subject is to
adopt the empirical distribution, 33(x;n), rather than the

4

approximations Fi(x;n) or szx;n).

Now we would like to know how good it is to fit the Gumbel
distribution to a set of annual maxima streamflows, as far as
the estimation of x(T) is concerned. Furthermore, we would

like, to compare the accuracy of the resulting estimates with

" the dccuracy associated with some other fitting  probability

distribution, as well as to a "time series approach".Thercfore
we will be considering three alternative approaches for esti

mating x(T) and we want to find out which of them will lead in



the averace to the smallest error. The threc alternatives arc:

a)

b}

Gumbel Digtribution (GUD}) - for.a given set of annual

maxima {xq,xz,...,xm), the cstimate @ and ;(Eq, 1)  are

found through the iterative algorithm

g (v,)
Vye1 = V5 7 g'(wji ’ , (11a)
¢O = 1.28/sx (11D)
1 = i x; exp (b X,)
G(Wj}= m [ET - %X ¢ 3 S5 TR ] (11¢)
3 i i
ERh dgéw) o (11a)
Y =1 m (11d)
’ =yt (3 exp (=¥ xJ

1

where

x and s, are respectively the sample mean and the sample

- standard deviation.

The exponential distribution (EXD}- there are several
competitive distributions to the first asymptotic, as
for example the gamma, the log-pearson type III, the

generalized extreme value, and others.The two parameters
exponential was selected here for reasons that will become
clear in the next section. It's probability distribution

is defined as ]

&~ xI

F,lx) = 1 - exp [~ , X > , A >0 ' (12)

Tt can be easily shown that skew (X) = 2 and Kurt(X) =9
The adopted estimation procedure is
A s —— (x - min (xi))

1

and



(13)

Ai>

4§ = min (xi) -

c) The time series approach (TSA} - it nscs the transfomed
daily strecamflow record {in Yy i:T; n}j,j=1, m in
order to estimate o, Band y. The cestimates are used
in eguation (7) to get F1 {x(T); n) and ultimately x(T) .
According with the observations related to Figure 3, it
would be better to use &, B and Y to get FB{X(T); n}
However this has been ruled cut from the Monte Carlo
experiment which description follows because it would be

computationaly unfeasible. -

Let's assume that x{(T) must be estimated f{rom a daily flow
record of m = 20 years {a typical value) which was generated

by the Markovian process with the parameters as above defined.

Equation 4 was used to synthetize s = 1000 sets of m = 20
years of "streamflow data", each year with a "flood season" of
n = 100 days. The three above described alternatives were em
ployed to each set in order to estimate x(T) for T= 1001 1000
and 10000 years. That is, FX(X) is respectivaly 0.99, 0.999

and 0.9999. The results are displayed in Table 1:

Table 1. Results of the Monte Carlo Experiment

Method | x(100) = 11.46 | x(1000) = 18.99 | x(10000) = 30.32
BIAS STV RMSE BIAS STV RMEE BIAS STV RMSE
G  [-3.411  1.75  3.57 |-7.59 2.4 7.99 |-15.88 3.27 16.21
_EXD 0.18 2.47 2.48 {-1.91 3.75 4.2%1 [- 7.80 5.03 9.28

" RMSE’

TSA 1.43 3.25 3.55 2.24 6.21 6.60 2.49 106.77 11.05
Columns
BIRS . = BIAS (X (T) ) = E(;:(T) — x(T))
SOV, = sm.DRv. (X(T)) = (var )% = @@ - exmnH 03
= e (K(m)°-° = EERM - x(1)30>

The estimator X({T) associated to the GUD method has the

smallest variance but on the other-hand it has such a lawge bias



that it woculd be highly non recomended in this particular casec.
For example E(X(T)) is roughly half the true value for T = 1000
or 10000. Also for these two T values, confidence intervals
around an cstimate X(T) will not tend to contain the true value
x(T), if these confidence intervals are calculated by the usual
procedure. That is, if X 1is distributed as Gumbel and if the
method of maximum likelihood is cmployed, then i(T) is asymp-
totically distributed as normal with E(i(T))nx{T} and var (i(T))
given by (Henriques, 1981),

var (X) 1

var, & (1) ~2EX) (0.6740.37 (en(-2n (11" 11122033 1 (~2n(1=T 1)) (14)

For example, for T=1000, var (X)}=2.23%, m=20, Eg. 14 yields
var (i(T)) = 2.262,_which is remarkably close to var{iﬁm)=2.492

A
of Table 1. Assuming a particular estimate X(T) as egual to
E(X(T))}, and making the appropriate calculations, a 95% one

sided confidence interval for the  thousand year flood would twn
out to be equal to (11.40, 15.13) which is still far below the
true value of 18.99. In conclusion, GUD would be a wrong
choice in this particular situation. This is a hint agalnst
the belief spread among hydrologists that the asymptotic theory

for extremes is a sound approach to flood modeling.

The estimator X(T) assoclated to the EXD methoSA has the
sﬁallest mean sguared error. It is the best choice, unless some
loss function is used to penalize the negative bias more heavily
than the positive bias. The rational for this hypothetical
loss function is that an underdesign of a flood control structure
has in general more serious conseguences than an overdesign. If
this is the case, the TSA would be the best choice for T= 1300
and 10000, although its estimator X{T) is sigtematically the

one with the largest variance.

3. PROBABILITY DISTRIBUTICN FOR ANNUAL MAXTIMUM

»

The exponential distribution (Eg. 12) was chosen as one of
‘the dlternatives for estimating x(T) in the last section because
extensive Monte Carlo studies have shown that this distribution
is very robust for fitting annual strcamflow maxima. (Damazio
ot al 1983, Damazio, 1984, Damazio and Kclman, 1984).-Tn other

words, using the exponential distribution to fit samples of



annual rarxima results in relatively good cstimates of x(T) acress

a range of possible parcnt distributions of X.

The scarch for a robust distrxibution for streamflow annual
maximum is not new. Slack et al (1975) developed a Monte Car
lo experiment in which many random samples of different sizes
were produced by parent population distritubions F(x) and then
these samples were fitted by distributions G(x),rot necessarily
of the same form as F(x). In each case an estimate x{T} was
found and the distance to the true value x(T) measured. Four
distributions were considered, either to make the role of F(x}
or 6f G{x): ' the normal, the Gumbel, the three parameter log-
nermal and the three parameter Weibull. The authors considered
sample’ sizes ranging from 10 to 90, population skewness ranging
from 0 to 15 and recurrence intervals ranging from 10 to 10000
years. They found that when F(x) was a three parameter distri
bution, the best G(x) was not frequently of the same form of
FP(x). Furthermore, they found that the choice of the hest G(x}
in each case was more sensitive to the skewness of the corre-

sponding F(x) than to its general form.

Landwehr et al (1980) selected six F(x) distributions from
the Wakeby family and allowed G({x) be either Wakeby, Gumbel or
Log—nofmal. The Wakeby distribution is well suited for Monte
Carlo . studies because it can reproduce different shapes of the
probability distributions usually employed in Hydrology and
also because it is easy to generate synthetic samples. The
random variable X distributed as Wakeby is defined as

X =m+a [1- (1-0)°] - c[1-(1=0) ™% (15)

where U is a random variable uniformly distributed in the interval
(0,1) and (m, a, b, c, 4) are parameters. The major conclusion
of Landewehr et al (1980 was that the Gumbel and Log-normaldis

tributions resulted on a rather precise under—-estimation of

. extree guantiles when playing the role of G{x}. lNowever this

was not-the case when G{x) was adopted as the Wakcby distri-

bution with . parameters estimated through the probabill

ity weighted moments method.
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Damazio (1984} repcated the study of Landewehr et al (1980,
adding the two parameter exponential distribution (Eg. 12) o
the list of the G(x) distributions. He found out that for T
larger than 200 years the exponential distribution with the
parameters estimated through the method of moments resulted on
the smallest cumulative (along the populations) mean syuared
error. His conclusion was that the exponential distribution
should be considered by hydrologists as an alternative for mod-

elling maximum annual series.

The conclusions from these Monte Carlo ~ experiments depend
naturally on the selection of the populations F(x)}. For this
reason, Damazio et al (1983) used regional Wakeby distributions

of annual maximum, estimated for brazilian basins by aprocedure

suggested by Wallis (1980), for playing the F(x) role. Again
the exponential distribution (Eg. 12} turn out to be the most
robust, among a large set of competitors such as: Normal, Two-
Parameter Log-~Normal, Three-Parameter Log-Normal, Two-~-Parameter
Gamma, Three Parameter Gamma, Generalized Extreme Values ,Gunbel
and Wakeby. The method of moments was adopted in all cases,with
the exception of the Wakeby distribution, which was fitted
through the probability weighted moments method. The second

most robust distribution was the Gumbel.

The search for a robust estimator of x(T) may be extended
to the case when some information on flood events which preceded
the gauged record is available. In some basins there are phys-
ical evidences about flood events ocurred thousands of years
ago, such as landscape "scars" and mud layer dJeposits. Palasoflood
hydrology is a branch of the geophysical sciences that seeks
the estimation of the magnitude and date of ocurrence of these
events. As it is not obvious if the inclusion of this kind of
information actually decreases the error on the estimation of

X (T) » the subject was investigated by Hosking and Wallis (1984).

.They Eamé to the conclusion that palaeohydrology information

i'é 'most useful when estimating a three parameter flood frequency

'distribution for a single site possessing only a short gauged

record. When several independent and homogcneous gauged records

-from different sites are used in a regional flood frequency

analysis, the value of palaecological information is negligible.



In other basins there is some historical information basecd
on the mcmory of old people who cventually knows the highest
river stage in his own life span and, with luck, also in his
parcntes life span. In these cases the most that the hydrojogist
can expect is to know that was the highest water level that
ocurred before systematic measurements started, going back h
years from now. This lenght of time, h, is in general smaller
than 150 years, which is not a short interval when compared to
m, the number of years of a streamflow record, (m is generaly
smaller than 50). Cohn (1984) developed new technigres to
incorporate this kind of historical information. He assumed
F(x) to be log-Pearson III and adopted the log-normal distri —

bution (a special case of the log-Pearson 11I) as G(x). e

~ found that the historical information was of tremendous value

for reducing the mean squared error of the estimator of x(10)

"and x(100).

Damazio and Kelman (1984) developed Monte Carlo studies
to find out what is the performance of the Exponential and of
the Gumbel distributions when historical data is available for
moderate h {up to 150). They defined a set of twelve popula-
tion distributions F{x) of the Wakeby form, falled W-1,W-2,...W-12.
All the twelve have one single mode, a positive lower limit and
no upper limit. Theilr skewness and kurtosis were selected in

order to resemble typical values of the brazilian rivers.

Figure 4 shows the chosen pairs of skewness and kurtosis,
as well as some empirical data. The lowest skewness in the
experiment was close to the Gumbel wvalue (1.174} and threecgmer
skewness levels corresponding to 1.5, 2.0 and 2.5 were also
investigated. For each skewness level, three kurtosis wvalues
were considered, the lowest one in each case corresponding to
the Log-normal distribution. Table 2 shows the main character
%gtdcs-of each distribution. It should be noted that all of

them have unit expected value and coeficient of variation arbi

*“trarily chosen as 0.49.



The Monte Carlc cxperiment was developed for h=50,100 and
150 years and m= 5, 10, 25 and 50 years. A large number k
of samples were generated by the twelve Wakeby populations for
cach pair (h, m). FEach sample i (i=1,k) was used to estimate
ii(T) by eight alternative estimation procedures that are the

combinations of the three way classification table:

(1 — Gumbel Probability Distribution
A= '
(2 - Exponential Probability Distribution

{1 - Method of Moments -
B = |
(2 — Method of Maximum Likelihcod

(1 - Use Only Streamflow Record

cC = |
(2. - Use Streamflow Record + Historical Data.

The method of moments suggested by the USWRC (1977) was
adopted for the case (A=1 or 2, B=1, C=2). The method of
maximuam likelihood suggested by NERC (1875) for the case (A=1,
B=2, C=2} and the method of maximum likelihood suggested by
Damazio and Kelman (1984) for the case (A=2, B=2, (C=2).Standard

procedures were used in all cases with C=1. .

The relative mean absolute error was calculated for each

population F{X) and each estimation procedure.

&, (1) - x (1) (16)

1 x (T)

X
1 z
MAE(T) = ¥ i
Figure 5 shows the variation of MAE (10000) for the popula-
tion W-1, which is "close" to the Gumbel and for the population
W-3, which is close to the Exponential. It is interesting to
,Obseﬁvé that when the "wrong" distribution is used to estimate
x(T), as-when the Gumbel is used when the population is W-3 or
when the Exponential is used when the population is W-1, then

an increase on the record lenght m actually increases the

errox!



In Figure 5 it can also be noted that an increase on the

length of time h has a very small effect on the crror.

Table 3 shows the estimation proccdure with the smallest
MAE (10000) for each of the pairs (h,m}) and each of the twelve
population Wakeby distributions. Inside the parenthesis it 1is
shown the corresponding MAE. It should be noted that the ex-

ponential distribution was the winner in all cases but the W-1.

The efficiency of an estimation procedure for each Wakeby
population can be defined as MAE*(T)/MAE(T), where MAE*(T) 1is
the minimum error among all the estimation procedures and MAE(T)
is the error for the particular estimation procedure under con-
sideration. A robust estimation procedure is such that its ef
ficiency does not drop abruptaly when it is not the winner.
Therefore a reasonable criteria for selecting the most robust
eétimation procedure is to search for the one that has the
highest minimum efficiency along the twelve populations. That
is,the minimax criteria seems to be adequate in this particular
situation. Table 4 shows the minimum efficiency for all pairs
(h,m) and eight estimation procedures. According to the minimax
criteria, it can be noted that A=2 (Exponential Distribution}
and C=2 (streamflow record + historical datz} are the best choices
There are some cases that B=1 (method of moments) would be
preferable and otﬁers were B=2 (method of maximum likelihood ).
As a rule of thumb the method of moments seems to be indicated

whenever h < 4m and otherwise the method of maximum likelihood.

The fact that the exponential distributiorn came out of this
section as the winner, which confirms and validates the cor.clu-
sion of the previous section, does not mean that we have a
reliable procedure for, estimating x(T), for T large. For cexam-
ple Kelman and Damazio (1985) have studied what would be the
design of the spillway for the Salto Santiago Dam, in the Igua-

.oegu ﬁiﬁer, if only 10 years of streamflow record imediately ante

_cedent to the year of the design weré available. In other words ,
several estimates of x(10000) were done for different "windows"

of 10 years sliding ovex the strecamflow record.



The cstimates of x (10000} ranaed from 13000 m*/s 6 40000 m' /s.Ms
in 1583 the peak flow of 17000 m®/s was.actually observed, a
catastroph could be occorred in several circumstances. Foctu-
nately the spillway was designed through hydrometeorological
methods and the capacity is 26000 m?/s, very close to the es-~
timate of x(10000) when the full 42 years of rccord are used.

Kelman and Damazio (1985) have studied the probability dis
tribution of the recurrence intervals associated with estimates
%(10000) from different record lenghts {(m)_sampled from CXPO—
nential distribution. They found for example that when m = 5
there is a probability equal to 0.20 that the recurrence inter
val of the design floed will be smaller than 100 years, when
one is actually trying to estimate the 10000 years flood event.
Since underdesigning of a flood structure is much more_serious
than overdesigning, the authors have suggested a 'safety factor™,
as it is so usual in the engineering practice, to be used when
ever the streamflow record is small. This safety factor was
developed under the assumpition that when the target is x({10000),
the probability of hitting some value smaller than x (100} should

be at most 0.01. The safety value J was empirically derived

as

~0.107. + 5.48m 0> _ €3.26m°2 4 169.63m -3 m < 23

O
1l

J =1, m > 23 (18)

Since this study was done for the exponential distribution,
the author's recommended eguation for estimating the 10C00

"'vears flood event is:

"%(10000) = J (X + 8.21 s}li) . (19)



4. DAILY STREAMFLOW MODELLING

Let us suppose that it is necessary to calculate the flood
control storage v* of a man made reservoir located upstream
from a city, in such a way that the probability of downstream
flooding is equal to p. By downstream flooding, it ' is meant
that the daily outflow from the reserveir is greater than a
critical value y*. If V is the random variable "maximum
flood volume to be attenuated in the reservoir during a flood

season of n days", one is seeking the solution of the equation

-

P _(V > v¥) = p {20a)
where
V = max [0,({Yj+Yj+1d...+Yk) - (k=3+1)y*} (20Db)

1<3<k<n
and Yy is the daily inflow to the reservoir on day i.

If the random variables Y. and Yj were independent ¥ 1 # i,
then the probability distribution of the maximum deficit derived
by Gomide {1975) could be used. This would be perhaps the case
for annual streamflows. However the strong time persistence

of daiiy streamflow make it necessary to search for alternative

solutions of Eg. 20.

Beard (1963) approached the flood control design problem
by defining a set of random variables (W(1}, W(2),...W(d),...W{n))

such that .

L

d-1
W(d):mgx (.E Yi%j’ i=1,2,...n-d+1) (21a)
i j=0
There is a {(1-p) inflow volume guantile W*{d), associated

to each duration, which is defined as:

.

io‘(w('d) >.w* (d)) = p (21b)

-

The graph (d,w*(d))} is usually a non-decrecasing curve

which is called the volume-duration relationship for probability



of flood p. In practice the values w*(d) are calculated by
fitting a probability distribution to each random variable W(ad).
As the estimate of the guantile w*(d) may be eventually smaller
than the estimate of w*(d+a&d), Ad > 0, due to sample variation,
very often "smoothing functions” are used te assure that 7 the

function w*(d) is indeed non-decreasing. The flood control storage

is selected as

Vg = mgx [w*{d) - dy*}, d=1,2,..,,n" (22}
which is Qquivalent to

Vg = w#(dc) - dc yF

where dc is called critical duration. It should be noted that

VB is smaller than the true value v* because

P(V > v_)=P{W(1) > vB+y* or W(2) > VB%2y* or ...)

B
* =
% P(W(dc) > Vg o+ dc Y¥) = p {23)
In other words, this method results on a probability of

downstream flooding greater than p.

Other possibility for calculating v* is to apply Eg. (20b)
to each flood season of the streamflow record, resulting on a
random sample (v1, V2"'“' vm) where m is the number of years
of record. A probability distribution for VvV is then fitted
to the random sample and v* is ultimately estimated. However
in several flood seasons the sampled V may be zero. In other
words, there is a probability mass on zero, P{V=0) > 0 and
therefore the number of positive ocbservations of V is smaller
than the number of flood seasons m. Consequently it is very
difficult to define the probability distribution of V , for
positive V, unless m 1is excepcionaly large. As this is seldan
" the hase, a stochastic model may be employed to produce as many
Synthéfib flood scasons as necessary to estimate v*, through

ﬁﬁe'eﬁpifical probability distribution of V.



If a stochastic model is available to produce thousands of
daily strecamflow sequences, it is possible not only to calculate
the flood storage, but also to evaluate-the safety of an existing
or designed spillway. This can be done by simulating the
reservoir cevolution and counting the number of runs that result

on dam overtopping (Kelman and Damazio, 1983).

There are several daily streamflow models-described in the
literature, as for example those suggested by Quimpo (1967)Treibe x
and Plate (1975), Kelman (1977, 1980), Weiss (1977) O'Connell
and Jones (1975) and Yakowitz (1979). -

However these models have seldom been reported as useful in
flood studies. Few exceptions could be mentioned as for example
Plate (1979), Taesombut and Yevjevich (1579), Bulu (1279) ,Kelman
and Damazio (1983). Perhaps the lack of popularity of daily

‘s£reamflow models is due to the skepticism about the capability
of these models to produce synthetic sequences with the same
statistical properties as the single observed time series. This
writer's experience is against the skepticism and in favor of
including these models in the hydrologist's tool kit. In fact
this writer and his colleagues at CEPEL have been applying suc-
cessfully a multi-site daily streamflow model called DIANA (Kel
man et al 1985a) to several flood studies in Brazil (Kelman et

al 1980, 1982, 1983, 1984, 1985b, Costa et al 1983, Moreira et
al, 1983).

it has been our experience on large basins that very simple
models,usually conceived on a semifempirical basis, give best
results. Perhaps this is so because simple models tend’ =0 be
parcimonious on the number of model assumptions, even at the
cost of not being parcimonious on the number of model parameters .
When it comes to daily data, the information available is usually
encugh to suppbrt the option in favor of simple models, very
. - often of a non-parametric typef’ in other words, in daily stream
__flow modelling, it is better to leave data "speak for itself" ,
.so to say, rather than imposing some tight pre-conceived sto-
chastic process formulation. It should be noted, however, that

we are referring to large basins which are not subjected to



hurricanes. In such basins an exceptional flood may result
from the joint ocurrence of events which are not themselves
rewmarkable, but that can be used as "building blocks" to syn

thetize hydrographs different from those observed in the past.

In order to illustrate these points, a model used by Kelman
and Damazio (1983) for dam safety analysis will be briefly
described (whis is not the DIANA model). 1Is might not represent
the best balance of the parameters versus assumptions conflict,
In fact it is biased towards minimizing the role of the as-

sumptions in favor of empirical evidence. -

Let Yi be the mean flow on day t and

2. sy, -y T ) ' (24)

. Z; is classified in a three way table according to the fol

lowing criteria:

Z. > 0 -+ a = 1
i
A —
Z. < 0 -+ a = 2
i =
B - qj-—-i = Zl--'l < qj > b = j
c - T & 1< T + C =m
The vector g = (qo, q1, Dor wvvy qj, “en, qr) partitions
the range of daily flows into r intervals whereas the vector
T o= (TO, Tar Tor oeny Tor sy ts)"partitions the flood season
duration into s intervals. Therefore each value Zilmw' fall
in one of the 2rs classes, according with the associated set
(a,b,c). The class marks should be selected according to the
peculiarities of data. For example, one may guess that the

falling (or rising) limb of the hydrographs behave differently
for -high and low flows and choose, by visual inspection , a
coﬁponept of g which will divide th two "states". Andlogously
onéhﬁaf observe that the floods in February "look different"

from those of January and therefore choose the last day of

January as one of the components of v. Care must pé taken to



avoid classes with scarcity of sample points. In fact the
number of obscrvations in each class should be laxge enough

to allow the use of the associated empirical distribution.

The persistence of daily streamflow 1is incorporated into

the model through a seasonal two state Markov chain represen

tation ’

m, = P(2, > 6 —Zi—1 > 0) ) (25)
and -

4o = P (2, <0 |z, 4 < 0) (26)

Where c¢ depends on the t wvalue, according to classifi-

cation C.

once the class mark vector g and T have been established ,
estimation of the transitionpmdﬁbilﬁieS1H, ¢1,n2,¢2p..,nsﬂg,
and the grouping of the observed z; values according to the
corresponding (a,b,c} set, is a simple matter of data manipulation.
Each synthetic daily flow sequence is produced according to

the following algorithm:

I) 1 = 0; sample g(0}) from the last-day-of-dry-season flow

empirical probability distribution; a = 1
II) 1 = i+1

III) set value of b according to Yim1 and of ¢ according

to t

T

IV) sample u value from uniform (0,1) distribution

V) if a = 2, go to (VII)

th

R Vi) if u » v_ then a 2 and go to (VIII)

.

. VIT) if u > ¢_ then a

I

1

VIII)} sample z, value from the empirical distribution of the

{a,b,c) class



IX) yy= ¥y 4t %y

X) if i is not the last day of the flood seascn go to

(L1} - o . . R

The above algorithm was used by Kelman and Damazio (1983}to
produce 100,000 synthetic daily streamflow sequences for the Fur
nas Dam, 1n the Grande River, Brazil, The input data . to the
model was a 32 years record of daily streamflows. The class marks

chosen as yomO y1—1000 y2-2000 Y3= {m3/s) and T, = Dec 1,

Ty = Jan 1, T, = Feb 1, Ty = Mar 1, Ty = Apr 1 and Tg = May 1.

Figure 6 shows a comparison between the empirical probability

distribution of annual maximum streamflow derived from the two

sequences. The good matching, evident by eye inspection,can be

‘confirmed bv the chi-squared goocdness of fit statistic of 1.01 ,

using six grouping intexvals,

Table 5 showe a_comparison between the statistics associated
to random variables "daily streamflow" and "annual maximum stream
flow". It is found that the historical statistics are contained
w1th1n _the 95% confldence interval obtained from the synthetic
reallzatlons. In other words, one cannot reject the null hypoth
esis that the historical series was produced by the model. This

is equivalent to say that the model itself cannot be rejected.

100,000 synthetic sequences were generated by a VAX 11/780
computer in 90 min of CPU time and only 28 synthetic sequences
were considered as "adverse hydrographs" for dam safety analysis
It seems to be a waste of computer time to generate 99972 se-
quences justo to find out that they were not critical and Gconse

quently that they would not be necessary for simulation.

Let us assume that each streamflow sequence is a pOLnt of a

sample space and we are interested on finding out which lS the

.#prohablllty of an event A of thlS sample space, as well as to

_simulate ‘the system s performance’ for several sample points that

~'belong to A. In the previous paragraph the event A would be

the  set of the "adverse hydrographs". It would be convenient 1f

the model could be biased in order to increcase the . likelihood



- ’F

that a sampled {synthetic) sequence belongs to A, without disior
ting the reliability on the cvaluation of the probability of A.
Kelman (1983) approached this question by using the importance
sampling technique ™ (HamdneYsley and liandscomb 1964, Rubinstein,

1981) .

Let

!

1 = Y & A ’
h' (Y) 0D ~— ¥ ¢ A (272)

-t
where Y 1is a daily streamflow seguence,

Examining the algorithm of the proposed model,one can realize
that it can be seen as a function that maps a 2n vector U,which
componentes are independent standard uni%ormly distributed ran
aom variables Ui’ i=1, 2n, into a n wvector Y of dimensiocn

equal to n. Therefore Egq. 27 could be re-written as

= 1 g Y ¢ A
h(0) = h' (Y) {27b)
0 «-s Y £ A '

n

The probability of event A, P(R) = p, is given by

p = ‘j-h' {y) fy(y) dy =.)f h {u) fU(u) au {28)
y u

where £ ( ) and fU(.) are respectively the multivariate density
function of ¥ and U. Obviously fU(u) is 1 when u belongs

to the domain of the random variable and ¢ otherwise,

The usual estimator of p, when m sequences y(j)r{yi,i:1,n}j,j=1,m

are available, is given by

m .
i h' (y(3)}) . ' (28)

o 1
- BFm 5

, Qﬁicﬂ—is unbiased (E(ﬁ):p) and has variance given by

var (P} = p_(1-p) ‘ (29}

- m



. risipg limbs, as if some uncommon fealture was imposed On

Examining again the algoritlun of the proposed model, one
can realize that if the u value of step IV is close to unity,

the hydrograph will keep rising if it was already going up, or

- it.will-start rising- if it ‘was going down. -Therefore a way of

increcasing the number of "critical" synthetic sequences, keeping

m constant, is to sample u values that are more likelly to

be close to 1. For example adopting for the marginal density

the following expression:

fU* (u¥;v) = {1-y) + 2 v ui R u;e{O,T) , ¥y >0, i=1,2,...,2n (30)
i

Eq. 28 can be re-written as

hiu*) £ (u*) . 'h(a*) £, (u*)
= fU* (a%) fU* (u*;y)Gu*= EU* fU* (a*)
u*

el
i

h (u*) 28 (b)

E‘u* fU-k (1.1*)

L}

Therefore a new estimator for p 1is given by

m m
Pl Ton ey 1 Db () (31)
1= Ege (UF(37] " m 3=1 £, (UF(3))
which is also unbiased. If fU*(') is properly chosen, the

variance of § may result smaller than the variance of P.

Mazumdar {1975) suggested that only a few independent variables
Ui cshould be substituted bu independent U; variables.With this
in mind, a numerical example was performed assuming that y=0
(no "deformation") whenever a=2 (hydrograph going down) . In

other words, y was only allowed to be positive for a=1, which
means that the synthetic hydrographs will tend to have long
. the
ggpegis of the flood, for example a cold front that stay longer

than usual over the basin being investigated.

The numerical example was done with the cevent A defincd



as A = {X > xT) where X is the amnual max lmoum strecami{low,

X = max fY.] 100 years. According to Mazumdar (1975) the

Lewl T

cstimate of var (P} for y= Yy when a set {y( ) i=1=m} produccd on

Lﬁd'point'?ﬁyo'ls available, is p:op01tlonal to

Oz h' ({y(j)}
COeava) = 5 F (317 vo) Fy, (@ (31771) (32)
The optimal y value can be found through an iterative

search, that at each cycle uses Eg. 32 to find out the y) that

minimizes var(P). This best y,; value is in_turn used as the
new Yo value in the next cycle. In the numerical cxample being
considered the process converged in 4 cycles to y = 0.28.

20 sequences of 500 flood sequences each were generated by
the streamflow model with v = 0.28, The empirical distribution
ﬁfobability of annual maxima was determined in each case, and

+he results are shown in Tabkle 6.

Table 6. Results of the Importance Samply Experiment
(meq= p{1-p) /var(®)) m=500
bie} 0.100 0.050 0.020 0.010 0.602 0.001
T {years) 10 20 50 100 500 1000
g(T) (m*/s) 4449 5054 5803 6393 7642 8206
cv (B) 0.21 0.28 0.28 0.37 0.58 0.94
CV (P) 0.13 0.19 0.31 0.44 1.00 1.41
meq /years) 204 242 625 723 1483 1131
m defined as the number of synthetic sequences which are
necessary to match var(P) {Eg. 29} with var (ﬁ) As could be

antec;pated P is a better estimator than » for large recurrence

- intervals, and vice-versa.

.-



5. CONCLUS1ONS

e et . s e

a) Theoxry of extremes is not as uscful for modelling flcood
streafmlows as has bean often sugdested. This is 50
because: a) one never knows to which of the asymptotic
distributions,if to any, the distribution of)&mﬁx.{Yi,izi,n}
will approach as n goes to infinity: b)the transient behavior
(n finite) may last for very large n .values; c) the
MSE of the estimator of x{T} associlated to the first as-
ymptotic distribution may be unacceptably large.

b) The two-parameter exponcntial is the most robust distri-
bution for estimating large return period flows for fleod -

like data typical of the brazilian rivers.

c) Daily stochastic streamflow modelling is a suitable ap-
proach to the study of flood phenomena. The computer
time reducing objective might be achieved by the importance
sampling technicue,although this topic must be further in-
vestigated and eventually will become obsolete due to

the recent announcements of new computers with paralel

processing capability.
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" " Table 2. The Twelve Wakeby Distributions Used as Parent Distributions '

x (T)
Wakeby a b c d m E{X) S&td.Var. X} Skew (X) Kurt(X) T=1000 T=10000
W 0.55 2.00 8.24 0.04 0.2% 1.00 0;49 112 5.46 3.46 4.51
w2 0.49 2.00 3.45 0.69 0.33 1.00 0.49 1.50 8.13 3.79 5.27
W 3 0.32 1.50 3.80 0.09 0.43 1.00 0.49 '1.95 10.52 4,03 5.66
W 4 0.14 1.50 4.19 0.09 0.50 1.00 0.49 2.37 73.03 4.25 6.05
W 5 0.89 1.50 0.8% "0.19 0.25 1.00 0.49 1.11 8.76 3.56 5.37
W 6 0.65 4.00 1.96 0.14 0.16 1.C0 0.49 1.56 11.87 4.0{ 5.97
w 7 0.42 2.00 2.08 0.14 0.38 1.00 0.49 2.10 14.37 4.1§ . 6.27
w 8 0.31 1.50 2.18 0.14 0.46 1.00 0.49 2.42 | 16.42 - 4.3% 6.51
w9 0.93 4.00 1.06 0.19 0.00 1.00 0.49 1.07 13.50 3.87% 5.87
W 10 0.73 2.50 1.13 0.19 0.22 1.00 . 0.49 1.63 16.32 4.02 6.32
w11 - 0.60 2.60 1.20 0.19 0.32 1.00 0.49 2.05 | 20.36 4.18 6.63

W 12 0.53 1.15 1.22 0.19 0.43 1.00 0.49 2.39 22.58 4,27 6.76
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1 TABLE 4. Minbmm Efficiency of Each Estimation Procedure, MAEF(10000) /MAE(10000) ;

. along the 12 Wakeby Distributions. (® is the "winner")

ABC ARBC ABC ARBRC A BC ABC ABC ABC “':
h m 111 17172 |1 21 122 211 212 221 222 :
.

150, 50. 0.22 0.22 G.21 0.22 0.30 | -%0.31 G.17 0.25
150. 25. 0.26 0.27 0.26 0.28 0.34 0.37 0.19 *0.39 |

150, {10, 0.45 (.46 0.44 .56 0.56 0.60 0.26 | *0.75 | -

150. 5. 0.44 0.50 0.47 0.78 0.46 0.61 0.30 *0.87 .
160. 50. 0.22 0,22 0.21 0.21 0.30 *0.37 0.16 0.22 i
100. 25, 0.29 0,36 0,28 0.320 .38 3,41 0.22 0.38 |
700. 10. 0.46 0.49 0.45 0.54 0.56 0.63 0.3 *0.76 :
100. 5. 0.49 0.58 0.47 0.86 0.50 0.69 0.34 *0.94 :
50, 50. 0.22 0.22 0.21 0.21 §.30 *0.30 0.19 0.19 A
50. Z5. 0.29 0.30 0.31 .31 0.40 *0.43 0.22 0.31 $
50. 10. 0.45 0.49 0.45 0.51 0.56 0.63 0.33 #0.70 ,
50. 5. 0.55 0.64 0.52 0.76 0.55 0.82 G.36 *0.85 i

25. 25. . 0.26 0.26 0.26 0.726 0.34 *0.34 0.23 0.23
10. 10, 0.45 0.45 0.44 0.44 0.56 *0.56 G.46 0.40 l
5. 5 0.61 0.61 0.60 0.60 G.77 *0.71 0.58 0.58 |




Table 5.

{
Comparison Between Statistics of 31 Synthetic Sequences and |
1 Historical Seguence, Each One of Them of 32 "Flood Seasons",

HIST

SYNT
MINIMUM
AVERAGE
MAXIMUM

P (SYNT > HIST)

DAILY STREAMFLOW

1
i

ANNUAL MAXIMUM STREAFMLOW
, |

MEAN STD.DEV. SKEW KURT |[MEAN STD.DEV. SXEW K URT
1210 720 1.65 6.86 3089 1031 0.88 :3.66
1288 873 1.76 7.82 3102 1081 1.03 | 4.82
1119" 669 0.99 3.98 2764 628 ~0.02 32.28
1288 862 1.57 6.46 3102 1048 0.76 3.66
1531 1152 2.44 11.50 3536 1424 1.69 7.16
0.87 0.93 0.42 0.38 0.48 0.48 0.45 0.51
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