A STOCHASTIC MODEL FOR DATLY PRECIPiTATION

BY .
e " J. KELMAN'
SYNOPSIS -- A general model for description and sample generation

of daily precipitation is presented. The basic assumption is that
precipitation is a result of censoring a non - intermittent
continuous-value process. Classical techniques for modeling the
persistence in this latter process can then be applied. The
continuous—-value process admits an immediate extension to
multivariate cases. The model was tested with series of several
gauging stations in USA. Results have been found satisfactory.

o INTRODUCTION

Stochasticaly generated rainfall seguences may beused for the
design and operation of several water resources systems. For example,
these sequences may be routed through some deterministic model of
the hydrologic cyecle, yvielding in this way a synthetic streamflow

.series. It is conceivable t+hat due to the better quality and quantity

of rainfall data one may choose- the uncertainty in the transfer
function, rather than generating new sequences of streamflow from
the unreliable historic records. These are often non-homogeneous
due to man-made styructures,while climate is in general stationary.
Furthermore,generated rainfall segquences may be important by
themselves, and not merely to pe used to produce streamflow
sequences, as would be the case in irrigation and drainage studies.
In the ensuing text a rainfall model will be briefly described and
then its application to some rainfall series will be shown in sone

-detail. Meteorological factors related to theprecipitation process,

for example cloud type, temperature, winds, humidity, etc, are not
considered. The observed record is examined naerely as arealization
of a stochastic process. No physical explanation of precipitation
ocurrence can be derived from the statistical description-of the
observations presented herein. - -

- " THE MODEL
Ietus assume that a stochastic process follows a first —-order
autoregressive model. Furthermore, let us admit that the marginal
distribution is normal, namely

Z, = un + p(Zt"l—u)'+ o] /&-u gt : ' (1)

£
where £, = N(0,1), and Zy =N (u,o2) . S

s Obviously,the Zg-process is far fromresembling an intermittent

record such as daily rainfall. Therefore,some filtering is necessary,
at least to eliminate the negative values of Z,.

Define a Yt*process as:
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= Zt,—if Zt > 0

Yt = 0, -if Zt <0 (2}

A realization of the Y ~process can be considered as a
. censored sample of Z,.. A cerisored sample is such sequence for wich the
values of the procesg that fall in a specific interval are not
xnown. For example, all zero values in a realization of the Y -
process represent negative but unknown observations of Z2_. In this
case the censoring interval is (-=,0). For this example, the
resulting sample would be truncated, if the negative values of 2
were not censored but also deleted from the record. In this case
even the number of negative outcomas would not be known.

It is clear that Y, is an intermittent process, provided with
a mechannism of persistence. I+ remains to be seen whether this
mechanism is appropriate in modeling and whether the marginal
distribution of the positive observations obtained through the Y.
model, namely P(Yt<let>0) fits the sample distribution well. In
fact this last condition is not satisfied, because guite often the
marginal distributions, in case the positive observations of the
process are only studied, are characterized by a high skewness
(higher than the one obtained by the truncated normal) .Incidently,
the truncated normal is the name given to the cumulative
distribution function (c.d.f£.)

P(¥<y) = ¢[${;;;§0] Iig,m ¥) | . (3)

where ®(+) is the c.d.f. for the standard normal distribution. The
positive values of ¥, might then be considered as a sample of this
truncated normal disEribution.

An examination of a typical case will help to explain why Yt
is not sufficient to represent the precipitation process. The
histogram of the positive cbhservations of daily rainfall at austin
for 70 years during the period May l-June 1l is plotted in figure
1. For comparison the probability density functions (wp.d.f.) which
correspond to the fruncated normal, and to the exponential
distributions .are also plotted in figure 1. The exponential
distribution is included because it is often used to model the
precipitation.'The p.-d.£. of the exponential distribution is: v

£.00 = v T g o) () L AR O

The parameter ¢ is routinely estimated as the inverse of the
arithmetic mean of the positive observations. For the Austin
exanple y = 1.898. The p.d.£. of the truncated normal distribution
is : :

fx(x) = L exp{- : (§§H)} I

x) - . (5)
¢(%)/§Fb 2 )’ .

(o,

The parameters y and ¢ are in principle estimated following
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the procedure proposed by Cohen (1959) . However, Cohen was mostly
concerned with cases in which the number of censored elements is
small compared with the total number of observations. In
precipitation data there is a large number of 2zeros (censored
observations). It turans out that graphs and tables supplied by
Cohen are not sufficiently complete to handle this situation.
Alternatively, an estimation procedure presented elsewhere by this
writer (1976) was cemployed yieding the estimates p=0.627 and
5=0.951. The exponential one-parameter distribution was fitted
only to positive observations, while the two-parameter truncated
nornmal was fitted to the censored sample, in which the number of
zeros was important. Since the probability of a zero outcome
depends on the ratio /0, it can be said that both distributions,
exponential and truncated normal, had one degree-of-freedom to fit
the data. .

~ The inspection of figure 1 leads to the conclusion thar none
of the two distributions produces a good fit. The form of the
histogram suggest that a better fit could be obtained by using a
p.d.£. which is asymptotic to the vertical axis.

Suppose that the ¥Y,~process is filtered according to

_ ¢l/o ' _
= Yoo . - {6)

‘with o = a real number. In this case the marginal distribution of
positive observations of the X, ~process is the power-transformed
_truncated normal distribution Ep.t.t.n., for shoxt), namely

N ax®Y 1 x%-u , ' -
Fyl(x) = exp{-5 (=5 1L, o) (X) (7
‘ , ©¢(u/olov2n : —- - ' :
Notice that when o < 1, lim fx(x) = w, For the Austin rainfall
: x+0

example, the estimate is 5 = 0.595. The corresponding p.d.f. is
plotted in figure 1. From visual inspection, without any test, it
is apparent that the p.t.t.n. does fit better the frequency
histogram than the other two p.d.f.

The estimation procedure reqguired to fin~ out, in each case,
the values of i, 6, p and & will not be explained here. The reader
is referred to the above mentioned paper. )

DATA SELECTION

Choosing a particular precipitation record to be one of the
cases studied here has been conditioned by the two requirements:
(i) The climatological description of the station location
should be easily available; and :
(ii) The stations should be sufficiently apart to possess
different climatological conditions. However, & few stations
should be sufficiently close in order to display some dependence,
in - this way serving as an illustration for the multivariate case
for which the model is also applicable. N ' :
The first requirement was satisfied by imposing that a
station would only gqualify if it had been selected to receive a
detailed description in WIC (1974). This publication gives a
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summary of climatological data of a large number of precipitation
stations in USA, furnished on a state by state basis. Among those,
only a few are chosen to receive a complete description. The
stations herein selected for study belong to this second category.
They are given in Table 1.

_pable 1. List of Stations Used for the Study

Station Period of Location Flevation Average Annual

Record IATIT. LONG. (£t.) Precip. Daysw/

(in.) Precip
Columbia {(M0) 1951-1968 38358' 92022 778 33.66 107
Kansas City (MO) 1946-1968  39°07' 9436 742 33.04 98
' gpringfield (M0) 1946-1968  37014' 9323 1268 38.46 106
Raleigh-Darham (NC) ~ 1951-1971  35.52' 7847 434 41.35 113
austin (TX) 18981967  30.18' 97,42 597 33.02 81
Rapid City (SD) 1951-1968  44°02' 103703' 3165 16.39 93
Flagstaff (AZ) ©1953-1970  35°08' 11140’ 6993 19.82 72
Seattle-Tacoma’ (W)  1950-1970  47°27' 122718' 386 39.95 164

The periods of recoraugiﬁén in Téble 1 were selected on the

basis of the availabitily of data. They do not necessarily

coincide with the periods in the WIC

(1974) publication. Figure 2,

with the locations of eight stations shows that the second

requirement is also satisfied,
scattered throughout USA, with

namely that the stations are
the exception of the three stations

located in the State if Missouri, used to illustrate the

multivariate case.

THE UNIVARIATE CASE

- ¥

A possible application of

the model may be in-generating the

new samples related to a specific short interval of time during
the year, say a particular month. For this case one is tempted to

assume the stationarity in the
of the model for this case the
divided im twelve seasons. The
32 and 28 days, adding up to a
the estimates of y, o, p and «
in table 2.

2-Fit of the Truncoted MNormol,

4-Fit of the Power- Tronsformed
Truncated Hormal.

",

g
1.0 .0

. X
Fig.l FITTING p.d.f. TO SAMPLE DATA {Austin;June)

3-Fit of the MNegotive Exponentiol,

data. To study the applicability
data of each station series is
seasons have alternating lenghts of
+total of 360 days. As an example
for the Columbia Station are given
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1-Histogrom for 70 Yeors of Dato:

Fig. 2 LOCATION OF STATIONS
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Table 2. Estimates of parameters for the Columbia Station

Parameters
o g 5) o

-0.4109 | 0.5475 .3848 | 0.6121
-0.3291§ 0.537¢ .3584 | 0.6655
-0.2170{ 0.5383 .1928 | 0.6249
-0.1947} 0.5578 .2295| 0.7106
-0.3110§ 0.7080 .3169 | 0.7143
-0,2939] 0.7182 .1900 | 0.6052
-0.3846 1 0.7701 .2641{ 0.6353
~0.5526 1 0.7812| 0.2158 0.6304
-0.6331| 0.9114| 0.3958 0.6065
~0.6799 | 0.8538} 0.3706 0.6254
~0.5193| 0.6632| 0.2948 0.6576
~0.33011 0.5219| 0.3451 0.6521 -

COOOOOO00
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 GOODNESS OF FIT

The chi-square goodness of fit statistic was evaluated forall
the 8 x12 =96 "stations-seasons”., The results are displayed in
table 3, which is self-explanatory. An examination of this table
shows that the good performance of the model with respect to
reproducing the marginal distribution_ for each season-station 1s
femarkable. Indeed out of 96 cases,only 13 had the hypothesis of
correct fit rejected at the 5 percent significance level. At the 1
percent significance level only four cases. NO null hypothesis
stating the universality of the model applications is tested here.
1f this was the case, and if the studied time series were
spatially and serially uncorrelated, then one would expected to
have no more than 5 ceason-stations rejected at a 5 percent level
or no more than lat al percent jevel. The purpose of this
particulaxr study is rather to identify cases for which it -is not
&dvisable to apply the model. For instance, the four seasons that
roughly span from pDecember to March for Austin station should not
be modeled by this approach.

TEST OF SERIAL INDEPENDENCE

———one might wonder whether The model assumed for the continuous
process, namely the first-order~Markov, may be excessively
sophisticated for the problem at hand. This can be put in another
way, whether.it is possible that the continuous process 1S in fact
serially independent, therefore with p =0, If this is the case, any
positive value estimated for p would be due to sample fluctuations.
Hence, a test of the null hypothesis that o= 0 may be appropriate.
—Let.g be the four dimensional.parameter space,--hamely --- - - -
6 = {(u,0,p,0); = < ¥ <= 0 <ag, 0<p<l, ~@<acx »}. Let us
define the threce-dimensional parameter subspace by &, = (p,0,0,8);
mo & p <, 0 < g, p =0, < o< ©}. We want to test the null
hypothesys Ho: O = {u,0,p,0)€ §5 versus the alternative hypothesis
Hp: O = (u,0,p,0)e @ - 9 . The gencralized likelihood-ratio,
denoted by A is defined to be T ’




rable 3. Chi-square goodness of fit statistic

senson StatlonColETbiaiKansas S?E;?g Raleigh| pustin | Rapid [Hagstaff] Seattle
~§.979] 10.670; 5.035| 8.118| 34.283 1.033 . 5.492) 9.960
1 (4} {5) (6) (9) (11) (1) ! (5) (10)
: A A A A C A ! A A
=015 | 10,465 | 10.794 | 24.353| 27.149 | 2.131 ~ 3.735 11.589
2 (5) {5) (7 {9) (13} 1) i (5) (8)
A A A C B A A A
TG BET 31,586 | 16.871| G6.417| 23.074| 4.347 = 6.226 4.708
3 (6) (9} (8) (8) {13) (2) i (5) (6)
A B B |->na B A ! A | A
15,427 10.649 6.327| 11.755| 21,4887 5.330 3.546| 8.122
- 4 (7) (8) (9) (7) (18) | (4) | (4) (5)
A A A A A A ! A p:
16 ATE 11,040 17.041| 6.529| 26.883 5.591 ; 0.179 7.048
5 (9) an | a2 ® | o | ® | o (4)
A A A A A A | A A
£ 5701 16,252 15.006] 4.845] 26.069)| 4.235, 3.165 1.547
6 (9) (12) (11) (9} {16) (m (2) (3)
A A A A A A | A A
8351 8,247 13.923| 17.880 16.346| 7.339  5.409 2147
7 (9) (12) (10) (12) (15) sy (6) (2)
A A A A A A A A
, 873 6.026 5.182| 17.650| 8.1207 3.693 12.9341 2.505 |
8 (7 (1.0) (8) (10} (12) (3) (6) (4)
A A A A Y A B A
y 5 €37 17,597 12.114| 17.382| 25.744] 3.249 1 14.631 1.397
9 ; (9) (11) (10) (9) (18) (4) (6) (5)
’ A A A A A A B A
5003, 10.477, 2.574| 6.383] 27.7793 5984 | 3.55L] 9.338
10 (7 8 1 (8) (8) (17) (1) (3) (8)
A At A A A A A J:N
: - TG 577 11,950 13.029| 19.063| 11.971} 7.061 1 5.143 10.982
11 (5) 6 | (9 (8) (14) | (2 ) | (0
A Fy A B A B A A
- — 5877 6,931 15.226| 4.237| 32.065] 5.039 | 6.445 25.928
12 (4) 5 D (7) (1.4) (2) (6) (10)
- A A | B A o A A C -

Observation: For the Columbia Station, season 1, the chi-
lsquare statistic is 8.979 with 4 degress of freedom. Therefore the
est could not be rejected at 5% significance level,classification
A. When the test is rejected at 5% significance level,
classification: B. When the test is rejected at 1% significance
level, classification: C
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with sup (*) meaning the supremun and I, the likelihood function
Notice that A is a function only of the observations and
therefore is a statistic. Wwhen the observations are replaced by
their corresponding random variables then X is itself a random
variable. It is known, for example from Mood et al. (1974)., that
for large sample -2 log A is approximately distributed as chi-
square with one degree of freedom, for this particular case.
" pefining LL as log L, we have, from Egq. (8}

— - 2[Bupy,g B - ey P 1 T XX IR

Let c— = e e

e b o e T T

CLL* = SUP4 .5 LL - - S : (10)

Therefore, one should reject the nuli hypothesis, for the gsize of
the test equal to vy, if

2 Nl
[ - —
2{LL SUPg .5 LL) > Xl_Y (1), ‘ (11)

where v is the probability that a wrong decision is reached, 1if
" the null hypothesis is rejected (Type I error). For y = 0.05 one
can reject the hypothesis whenever the test statistic takes avalue
greater than 3.84. Table 4 gives the values obtained for all the
stations. It can be seen that for all but to of the 96 vases the
null hypothesis were rejected. The only exceptions ocurred for the
12th season of Rapid City station, where yZ2 = 3.81, and 4th season
of Flagstaff, with X2 = 3.79. These two cases may be results of
pure chance variations.

This overwhelming rejection of the hypothesis of serial
independence in the analysed precipitation series makes one wonder
about the reality of several models, described in the literature.
that neglect the time dependence in.daily precipitation. *




Table 4.

Critical Value =3,84

Test of Serial Independence

[ t i
Seaso;a“lontblumbiq Kansas fgﬁé?g Raleigh| Austin Rapid Flagstaff |Seattle
1 17.305 114.423 [24.474 113,211 93,511 113.310 $0.055 162.657
2 15.023 . 12.5683 118.955 & 7.282 165.116 117.827 35,279 140,562 |
3 5.633 129.020 114.343 18.498 162,326 |22.344 37.0610 54.015
4 7.316 |17.755 (13.854 §.584 (64.543 120.015 3.791 [3l.7¢%
5 15.243 77901 112,660 - 7.011 170.383 ™22.304 | 29.906 17.735 ¢
6 4.521 6.536 113.647 '13.7906 184.268 1 9.858 | 25.922 18.223
7 9.650 |11.112 {12.346 .17.017 37.787 | 8.339 20.816 130.1:3 i
8 4374 120,713 | 7.324 -11.246 [48.091 4,247 74472 |41.227
9 19.662 115.034 |26.193 26.576 a0.777 115.584 1 30.172 59,112 |
10 137130 |23.827 | 6.481 22.644 (71.480 12.595 19.096 |42.0-2
11 8.961 G310 121.756 :16.201 (99.947 i10, 171 27.546 37.009
12 13.260 |25.057 |28.613 |12.55L 97.713 | 3.808 35.404 30.6562

A simple lllustratlon is given here to
model in a multivariate case.
the new samples of prec

Kansgas City,

dependenc
month for the region is ©
corresponding to the 6th season.
and o for each station.

correlation coe

BeOrDy

and Spring
e among them. Assume
f interest. This is June,
“First one must find the values of
Next step is to find each of the
fficients between station

three lag—-zero Ccross
series.
+o Rosenbaum (1961).

This can be a

Suppose that o
ipitation data for th
field simultaneously by preservin
further that only the most rainy
roughly

ccomplished solv1ng equation(12)

. i (3) bk
z ['B_('%“)- o(k]p {J k) o .
u(J) o (k) H(3)4 (k)
0(3 N or(k)]m(j k) * G (J)o (k)
n) k) )ik g
a(:) Ry )8 o(j Ay () +Ry ()
where o
N oA . '
. .. - Z xoc(J) -G(j)n
ml(j) = = P (j)
- n o)
n - —— .
- a(k) N ) -
~- - T - fi(k)n
iy (k) = Ly 2 (k)
== = n o(k)

show the use of the

ne wants to produce

e station of Columbia,
g the areal

which is due

[ (3) + Ay (0135 G%)
i) 4 () k)
5, 9 g R
n -
R SCACLNC e 1
~2 .
n (1)
n - e --—-.'
-7 (L 09 - g1

0
(12)



n -~ -
BG4 = T [w(?ﬂ - e ¢t - no0)]
S n,5 (3)5 (k)

"and p(j,k) is the only unknown. Tt is emphasized that the
expression of Eq. (12) is to be used for the data of days with non-
zero observations occur in both stations under consideration. All
the remaining information is neglected. Because of the sample
variation Eqg. (12) may not have the real roots.

The results are summarized in Figure 3.

Figure 3. Representation of parameters Needed for Generation

.of Daily Precipitation Series for The Month of June.

.Y

(2) o | | (1)
=0.772
Kansas City (MO) P12 | Columbia (MO)
u = ~0.3091, p = 0.1938 . .. y = -0,2939, p = 0.1900
o= 0.8008, ¢ = 0.6870 T g = 0.7182, o = 0.6052
=0,489 : =0.699

P23 ~ | -
) (3)
Sspringfield (MO

)
: W= -0.3748, p = 0.2893
- C o = 0.8293 a =

¥

- - once the parameters are estimed, the generation of new samples
can be accomplished by following the stepwise procedureillustrated
in Figure 4.

Figure 4. Representation of the Intermittent Model

’ “ By FILTER ¢ FILTER Yy FILTER Xy
1 2 3

*

In the multivariate case some care must be paid in generating

Et j; j=1,2....,% because the variables may not be independent,
' .

with j as the station subscript. A way of doing this is by the use
-of s _ - e - SconocoToL. T LT St - =T

~FIT fét = “ﬁt’ : oLz . ;"53, LT TToLI Ll Ea (13)

“in which 7 is a &x2 matrix and n, is a g x1 'vector of independent
‘standard normal deviations . Then

- L .- A - .. - -

cov(f,) = cov(mp,) =7 cov(n—).w; (14)
t 2 covilly

where cov [(+) . means -the covariance matrix of_the argument vector.
But e .- .- -



-cov(nt) = Ty, (15)

where I, is the &x% identity matrix . Then from Egs (14) and (15
Cov (gt) = 7u' . (16)

On the other hand, the linear autoregressive equations for stations
5 and k are:

. ) . S 7.
Zt,j =u(3) +p(j)(Zt_l'j-u(3)) +0(3)Y 1-p7 (3) Et’j (17)
and
zt,j =u(k)-+p(k)(zt_l'k—u{k){-tc(k)/ }—p:(k) Et‘k . (18)

Multiplying Egs. (17) ahd (18) and finding the expected values,
then

COV(ﬁttﬁ;gt‘;Y”;”p(J:k)(l—p(j)p(k)) - .

o (e k)

where p(3j) and p(k) are the serial correlation coefficients
respectively for stations j and k, and p{j,k) is the lag-zero.Ccross
correlation between the two station series. From BEgs. (16) and (19)
one may conclude that the (j,k)-element of matrix m=', jFk, is
given by Eg. (13). The diagonal elements are unities. Several
methods are available for finding the matrix m when nww' is known;
Young {(1968) gives a straightforward one.

: One hundred trivariate samples each for the month of June,
were generated simultaneously according to the procedure explained
above. Out of many ways of comparing the historic and thegenerated
series, it was decided to focus attention on the joint positive
runs. A joint positive run is defined as a succession of days for
which the precipitation is observed at all three stations,preceded
and followed by days for which at least at one of stations no
precipitation occurred. For each joint positive run, the two
variables of interest are: (i) the length, defined by L2-Ll-+l,
and (ii) the joint run - sum, defined as

LZ .

f"'z |
X .
i=1  j=b, *ede o

where Xj4 is the amount of precipitation at the ith station in the
jth day,j; =the first day of the joint positive run, and L, =the

last day of the Joint positive rin. These two variables were
selected with the solution of flood problems in mind. Table Sgives
the absolute frequencies of run-lengths for the historic and
generated series. _ .. e e e .-

_ Table 5. Absolute Frequency of the Joint Positive Run-Lengths

- : Sample Run-length Total i
" 1 2 3 4 5 6 R
AR Historic 31 8 5 1 0 0 45 R

: ) Generated 190 31 19 4 0 1 - 245 T

e e mee - 4



Whether the two samples of Table 5 can be considered as drawn
from the same population is of crucial importance inthe evaluation
of the nodel. A way of answering this question is by using the test
of equality of two multinominal distributions. The reader is
referred to Mood et al. (1974)where a description of the test is
given (pages 448-452). It is sufficient to state here that the
sample space is divided in k +1 subsets and the null hypothesis
states that Ho: Pij =P2j, §=1,2,...,kt1 where Plj = the
probability that an outcome of the first population belongs to the
jth subset, and P23==the same as Plj but in regard to the second

* population. For the above data the division in three subsets(k =2)
seems convenient, namely: (i) run of length 1; (ii) run of length
2; and (iii) run of length > 2. .

It can be shown that “
2 k+l ' 2 , :
i=1 j=1 gi(Glj + sz)/(gl + g,)

-has a limiting chi-square distribution with k degrees of freedom,
where g; = the total number of observations for the first

population (in the present case, 45); g2==the same as gy but for
the second population (245) ; Glj = number of outcomes in class J,
from the first population; and sz =the same as Glj' put from the

second population. .

The use of Eg. (20).-with the data of Table 5 yields avalue of
2 =1.58. Since the 95 percent quantile of the chi-square
distribution with two degrees of freedom is 5.99, the null
hypothesis cannot be rejected at the 5 percent significance level.

With regard to the jeoint run-sums, again the test whether the
two samples {not given in tables) were drawn from the same
population 1f performed. Since this variable is continucus, the
two-sample-Smirnov test seems more suitable than the multinomial
one. For a description of that test see pradley (1968). Here it is
sufficient to state that under the null hypothesis of equality of the
two distributions, the random variable

W o= max [S;(x) - S, (x) | (203
< .

has some distribution which the 95 percent quantile is given
approximately by '

94 + 9o .

. 21]
- 9192 . . (21)

1.358

where Sl(x) is the sample c.d.f. of the historic sample and Sz(x)

js its counterpart for the generated sample. :

The application of Egs (20) and (21) to data gives the values
of 0.1868 and 0.2202, respectively. Therefore, the hypothesis
stating that the two samples can be considered as drawn from the
same population should be accepted at the 5 percent significance
level. ’



It can be said that, the application of the model to the
multivariate case is satisfactory for the example used. This is
a positive indication about the feasibility of using the model.
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