. Jb&bi

_ MULTLVARIATE WEEKLY STREAMFLOW FORECASTIN

|
i
N
l
Gi

MOD

\
Che Pl ;o
’ RN kg - )L')}Q‘JN'. DAt

>

I
G.C. de Oliveira . !
J.P. da Costa . . i
J.M. Damazio
J. Kelman' 78 Mames Here |
CEPEL - Electric Energy Research Center '
Cidade Universitaria - Ilha do Fundao |
P.0. Box 2754 - Rio de Janeiro, Brasil |
f
}
i

R SRS U £ - BN

HiS AREBAM >

T
H

sbstract. Inm the operation of a reservoir system, it is of ipterest to kanow an
of the confidence interval of the future inflow volumes for each reservoir.
In this paper, the one-step ahead foraecasts of weekly inflows to

estimate

obtained through the use of a’

_The

¥or medel's parameters. The stochastic model was formulated within
state
sirple random walk process teo allew for time dependency of parameters.

the state-space representation where

algorithm employed 1is the

estimated at each step. The forecast error covariance matrix

confidence regions

the

multivariate autoregressive stochastic model (MAR)
which, besides serial dependency, represents the spatial inflow dependency
continuous incorporation of measurements favours a recursive estimation procedure

extended Kalman Filter, in which the noise covariance is

for inflows. A case study with a South Brazilian reservoir system

UTSioE

each reservoir are

structure. Ll
the framework of - . i
(MAR parameters)} is modelled by a
The recursive

is used to buil the

for hydropower production is presented. The order of the MAR model was chosen based »n | {

performance indexes related to the
data. The
series indicates that the mnultivariate
jnivariate cnes, besides
inflows.,

4

Keywords. Prediction; Kalman Filter, Multivariate S§ystems,

State-Space Methods, Hydrology.

INTRODUCTION
Weekly streamfilow ~ forecasting is a  useful
technique for the short~term operation of a
hydropower reservoir system {e.g. Pereira, 1985).

When the reservoirs that constitute the system are '
owned by different utilities, it is necessatry to

check the compatibility of the several at-site
forecasts, which are wusually done using models |
developed specifically for each site  either

through a rainfall-runoff relatienship or through '
a time series approach. As the forecasts may be
obtained without considerations to information in’

nearby sites, the coordinating organism for the

operation of the whole system mneeds a tool tol
detect whenever the set of at-site forecasts do
not fit  together. The multivariate forecast

a reasonable "detection device".

It is necessary to deal with the confidence region
streanflows rather than

with the set of the confidence intervals, because .
a get of at-site forecasts may not be not located,
on the tails of the univariate distributions and .
therefore be considered a reasonable prediction,
while they are in fact located in the "tail" of
the multivariate distribution, and therefore
should be considered suspicious. Figure 1 shows an
example for two sites, where it can be seen that
point & is a suspicious forecast, although it
could not be detected by the univariate .approach.

i
|
!
confidence region obtained by some simple model is'!
!
I
f

for the one-week ahead

" On the other hand, points B, C or D would bhe:
considered unacceptable forecasts under one or!
both ¢f the univariate confidence intervals and!
acceptable forecasts by the multivariate !
confidence region. " :
ol
The multivariate modelling of the . streamflow¥ |
process may have the further advantage of] \;,’;

forecast
compariscn between the MAR model and the best upivariate fit to each site
scheme
providing multivariate

¢ emene vt e e mmid

'
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obtained within the historical
produces forecasts similar to the

confidence regions for the future

Streamfiow Modelling,

producing mere accurate forecasts than those'
produced by the use of a set of univariate models
of the same <ype. On the other hand the univariate.

models are generally selected specifically for
each site, even if restricted to the time series
approach. It is not obvious which of the two
alternatives is more accurate and this question
must be examined in a case by case basis.

MAR(p) MODEL ~ STATE SPACE FORMULATION :

Let z_  be a n-vector of stanlardized normal ;

variables, and v, be a n-vector of normal

variables at instant t such that: . . :
. !

E (vt) =0, ’ a |

'
/ * M
T

{

/ 1
¢ i

Cov (vt 4%) = R, ‘

S t#s,

H
/

!
v
i
1
[y
¢

) =
E (vt Vs) 0,

* where E {.) stands for expectation, Cov (.) stands'!

for coveriance and 'stands for transpose. The.

. MAR (p) model is:/’ i '
’ ' |

. / - 1 1l

= e + i)
R N ( ):

/

where Al ,.i., Ap are the nxn parameter matrices.
It is known (e.g. Ledolter, 1978) that individuall
series from a MAR model follow an ARMA model.
Since univariate forecasting streamflow studies
usually deal with low-order ARMA models, the

* MAR{p) family is a reasonable framework. Note that,
P ¥ ;

i

1
H

i

* {eymmetric R matrix).

the total number of parameters of MAR(p) model is
pxuxn  (matrices By, e, Ap) plus afn+1)/2
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An altérnative to the moments (Salas, 1980) or: The Kalman Filter algorithm is a set of equations
maximum likelihood (e.g. Salas and Pegram, 1979) which allows an estimate to be updated once a new
estimates of the MAR parameters, which can present’' ‘observation becomes available. i
difficulties when one has short records, is the Vo |
Kalman Filter algorithm. ' . 'The forecasting equations (6)-(9} below give the
' i optimal forecast %(t|t-1) of x, and the optimal
A state-space | formulation ~AyoEiequationiy F(L)E 1+ '  :forecast Z {t]t-1) of z_ given all the information
considering the matrices'hi}iTTTA “as‘the'staté—ygj' """"" —currently-available, befides the - uncertginty**of‘;é
is given by: P .. ithese forecasts: | %
1 . L] £ §
t . * M ' i - - 1
: LR A () x(t]t-1)=E(xt|z1,...,zt_1)=x(t—1|t~1) (@ :i
i aypeAuBmu'NamesHem Loy | : e
¢ ! ! t - g
. v -1 Yy ~ - =p(e=11t~ ' :
2, = WIxg #idjors Address Here )1 Pt 1)-cuv(xt—?:(t]t 1)’21,...,zt_l') pie-1fe-1d . (D)
‘ . 2 . o A A i 3
where x  is a a"p-vector defined as: . Py z{t|t-1)= H x(t]|t-1} [ (8) i
! ;o I |
ol 1 2 2 P pa A P ' i
T T Dt Mc § R S 211 " Bng- j‘Z&hﬂE@ﬂqzﬁﬁﬂHﬁu;#??ﬂﬂ&hﬂmb& W _Ic
| COMME LS text of articie (4):'; | . ’ 73
;and , co At each new observation z , define ‘the nxli-
Ak - {agj } §=1,.en.,m; i=1,...,n , | : iJ.nnovats.on vector u, as: % el
o =5 -8 =tjt- ’ 1
w, is a nzp—vector of gaussian random system noise| ' | U T % By x(e]e-1) l a0 n
such that: ‘ I b i 2
) [ i
to The updating equations (11)-(13) below incorporate
Ef{w)=0 oo . - . - b
t ' ,  the observation z  into the estimate %(t|t) of X 3
N = o . _ ‘ i
Cov (w,) = Q, P a(efe) = RCefe-1) + K uy (11),
" X8
1 ' . A . - .-
E (wt ws) =0 st ' where K, = P(t|e-1) H IZ(titfl) ! is the Kalman *
£(w v') =0 ) ¥ s.t ' 1 gain, and the uncertainty of %#(t]t) is given by
t 8 ' : .

and Ht is a nxnzp matrix defined as:

—_ s
Ht = {H1 H2 ves Hp] | {5)

. 2 . .
where H, 1s a nxn matrix given by

’

T v N

Ze o ... 0 :

.= ¥ * as e l
Hl 0] zZ, 3 o i
K - T i

u 0 cene Zpg |

where O is a lxn vector of zeroes.

For example, take p=2 and n=2 50 that

t-1 t-1 t-2 Tt=2 -

n a‘( al -
A n ‘iz
1 - at a‘ :
L 2t 22_ ;
Lo 2 i
a a, ., |
N et 12] ;
2 a’)" az. N f
21 %22 ,
L - N . :
AY
Then the state-vector becomes: "
) |
- 1 1 1 1 z 2 2 2 qt X
x, = laj; 8y, a5, 8y, 87 a7y 83 85y]
| \ ‘
M ‘\\ !
and the Ht matrix: \ :
H 0 N ]
! W @ @ ,
‘ 2, 21 00 0 Pea T o0 ;
hY

B = 5 N l
0 0 z (1, (2) 4 o 2z ® (2) :
f

1 M - \
Equation (2) rapresents a random walk for the MAR,
model parameters, to allow for time variation.:
Equation (3) is just another way of writing
equation (1). ;

Hdﬂ=cw&t—ﬂdﬂhru”%FQ«t%)ﬂdbD (12) .

¥

. These estimates are conditioned on initial valuks

x ,P(0|0), @ and R . In the case of unknown noise '
covariance ‘matric8s ¢ and R, 0O'Commel, (1980) .
derives recursive equations for Q  and Rt that are .
updated at each new measurement: ’

I

i
| P
FQ((e1) Q_p + (K u, u K+ P(t]c)—P(t—li:—l)))lg (14) F

[

-

) 1 :
Rt=((t~1)kt71 v (u up - H pt|t~1) )/t {13)

! e

The measurement forecast error covariance matrix’
Z(tlt—l) can be used to build at each time t-1 a.
‘Eultivariate confidence region for the forecast:
z2(t|e-1). , ! l
/ i
I MODEL FITTING )’ i
e SN T TR e :
NU&'selected Whekly data”’ from three caqca%ed;
- gauging sites at Iguagu River, South Brazil, two.
_of them associated with hydropower plants (see-
Table 1). In order to obtain normality in the
. data, a logarithm transformation was first,
applied to the incremental inflow volumes,
resulting in a 3-vector y_ of weekly data,
t=1, ... ,1040 (20 years of concurrent data).
. Using the first 18 years of data, the weekly means;
and standard deviations of each agite were!
estimated, and their periodic behaviour were.
represented by adjusted Fourier functiongs.

PR P

‘ . . N
Then a standardized 3-vector z, 1s obtained as i
. i

A - (y (1) - (i) /o (i) 1 (i6)
where 1, (i), ¢ (i) are the Fourier functions for
the weeékly mean and standard deviations for sites
" i=1,2,3. For the correct jdentification of the
dependence structure of z it 1is ipportant to
remave all the periedicity In the means. Since

where now: ‘ - v

- - t ~ ' -1 s
K, = p(tfe-1) B (8 P(t{t~1) B, o+ R (15)



“/The first autocorrelation coefficients for the 3
sites do
2, 3 and
z (i), for sites i=1,2,3. Thus it can be inferred
tﬁat the MAR parameters are time invariant, that '

is, Q=0. The Kalman Filter algorithm was first ' }
applied to MAR(1l) and MAR(2} in order to identify '
the wvalue of p. In both cases, a forecast
experiment was performed with the remaining twol&

years z_ data. In order to choose the best
forecasting model, the performance index selected
was the root mean squared forecast error of the
incremental inflow volumes. The forecast q (i) at:
time t, site i is given by :

[ —— — 3 2 13
qt(l) = exp (yt(l? + 0.5 Uy(zJ) (17}'
where '
§,(0) = £,(1) G0 + H i) ey | !
't "t t ? to
i
o2(i) = o®(i) o2(i) ag)
Y L Z i ;
and { !
Gi(i) is the i-th diagonal element of z{t|t-1), : 0
i
Et(i) is the i~th component of %(tlt-l) E 1
. - i .I
1

Table 3 presents the performance indices at each

437.

i . " ‘
By this criteria, MAR(1) is the best choice. Table
4 shows its parameters (A
Filter

site for both cases, and also the performance ! !
index for the sum over the sites o¢f individual i )
forecast errors. N .
\ v
\ 1
TABLE 3. Root Mean Squared Forecast ; i
; Error~MAR Modal E\ | :
H 1
z Site MAR(1) O OMAR(2) |
i 1 30. \ 28, !
! 2 133. v 156, | !
! 3 318. W32
L 1+2+3 423. [
g X 1
1
?

matrix)
their

estimated , by !

the Kalman and associated '

wncertainties.

not present a periocdic pattern. Figures iy
4 show the autocorrelation function of '\ ©

ﬁovevrenoval of harmonies in the  standard v TABLE 4. MAR(1) barameter kstimates ' o
deviations does mnot modify significantly  the ': : i
identification of the dependence model (Yevjevich! | Parameter Standard Deviation
L and Obeysekera, 1985), the same number of relevant | : I S I
“harmonics was used to remove periodicities in the| oo a, L7179 033

. means and standard deviations in all sites. b a1y - .179 +045

' . n PYPE TITLE GF APTIGLE HERE ON PAGE 1. 213 +194 .037
- TABLE 1. Hydrologic Sites Characteristicy 7T ; &5y 262 032 L

; ; - a 472 .043 5 o

| ' . a2? 17 .035 N

! Dramagg Rydropower  Installed | .- | o3 060 033 g

Site  Name Area Plant  Capacity , i ! -3 074 045 u

ATl Avnthor: 4-. n‘ “‘- Hie. (m) 3 ] 332 * * o

: . : : : a3y -694 .036 {
' T evn Suthornses4ldress Here |

1 P. Amazonas " 3668 e . - ' | 'Figures 5,6 and 7 show the residual |4

zu Vltox.‘m 24211 . Are}a 2508 autocorrelation functions for sites 1,2 and 3 and i

3 8. Osorio 45824 §. Osorio 1998 . their 95% confidence interval. Except for site 2, -

i they can be considered as white noise. Figures 8,9 iwy
S e - . o ice--and -10 show. the forecasted and measured inflows- [l
Tablg 2 shows that th? %, Series have 2 blgh for sites 1,2 and 3 as well as their GB%Euj
;gg:iiingep::izggz: which justifies a multivariate ‘ confidence intervals. : i i?ﬁ

i Univariate ARMA Model { &
TABLE 2. Sample z, Cross correlation P E LM
estimates between Sites In order to compare the performance of the:?L
; multivariate scheme with at-site model forecasts,iﬁ:
1 2 3 individual ARMA models were fitted to each 31te'
i 1. 'B?B 'ggg with parameters estimated by maximum likelihood w‘
< ‘ * method (Hipel, McLeod and Lemmnox, 1977) using the'
3 L. - first 18 vyears of data, The model order at eachl'"
. / site was chosen by the same erIiterion used ¢
MAR Model ! arlier. . L

The ARMA (p,q) model can be written as

2,7y 2oy TeeeT ¢p Zyp at-elat-l .- Bq g’
{ (200
. :

where ¢,,3=1,...,p are the AR parameters, 0.,

j=1,...gq the MA parameters, and a_ is a normally

independently distributed white rmoise residual
with zero mean and variance ga where the site
subseript 1 has been dropped ®for notational

., convenience.

' Table 5 presents the parameters of the best ARMA

(p,q) model fitted for each site.
i

TABLE 5.

‘

Parameters of Univariate ARMA Models s

Site Model Order AR Parameters MA Parameters

1

1 2, v .285 .312 624 o
.2 (1, 1) 764 -, .226 !
13 (1, 0) .797 - o Ef'
I / ) i
The forecast Et is given by. ’ : 5
! / i ol
- p - . o
i Z, = $p Zegteot ¢p Ty - By B, 7 eq Bpg i1
b ‘ (21) .,
i J/ ; .“
where ’ !
! | !
'3 3, .0 3 (22)'
= - ! = !
. at-j zt—j z‘___‘___I , j=1,....q 1 ‘
; ; Ea,
' For this case equation (17) becomes | 1
1 . |
| - w . 2 E Iy A
: g, =exply, + 0.500), : (23)“,_
1 ; ' .
' where ’ | i
; , ! %u
! 3 ;
(Ve T 2% T He l (
g2 =gl g2
; y /ft a - | }
| Note that the site subscript i has also beeni
. dropped. | !
" ‘ !
s . i
' 'rable 6 presents the performance indices at each[
site obtained 1in this case, as well as the
narfarmencra inday far Fha sum nwer  the  sites af



individual forecast errors. i ‘ i

Root Mean Squared Forecast -
Error-Unisite ARMA Models

TABLE 6.

. Bite Performance Index !
PG TYPETITLE QF ARTICLE HERE ON PAGE

11 29. i
P2 121. .
;3 . 313.
14243 399. .
ryne Authors” Mames Here :
§
Figurs 11, 12 ‘and’ “13' “"show the residuall

aurocorrelation functions for sites 1, 2 and 3 and!
their 95% confidence intervals. Figures 14, 15 and!

.

.state-space formulation, such that a Kalman Filter

!

H

t A .
.In this paper #& (yas presentedi a multivariate

i
models. \
i

autoregressive stochastic model, MAR(pY Jwithin a

algorithm can be employed to estimate the model

parameters and to produce forecasts, It was shown |
that in & 3-site case study with twowyear weekly o
inflows, the Kalman Filter suc%ssfully estimated |+
the MAR model parameters and produced one- step <]
‘ahead forecats with a performance equivalent to Eg
the at-site best ARMA forecasts. i <
! %)
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COMPARISON BETWEEN MULTIVARIATE Lo REFERENCES | -
AND UNIVARIATE APPROACHES ! .
- ! Hipel, K.W., Mcleod, I.A. and Lennox, ¥.C. (1977).5cj
The simplest forecasting model is the "naive" Advances in Box-Jenkins Modelling. 1. Model "1l
formulation & = z which gives a lower bound to: ) Construction. Water Resources Research,13(3)'§f
the predictién eXperiment. With this "naive" | 567~568. L
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formulation. Hydrologic Processes. Waterxr Resources Pub-

. i , . H
+ The residuals autocorrelation functions from both

approaches have very similar patterns. All #F
values, ‘except for site 2 lag 1, 1lie inside the
95% confidence intervals for the white noise
process.

The forecasted wvalues shown in Figures
8,9,10,14,15 and 16 demonstrate that both
approaches give satisfactory results. The
multivariate approach is advantageous because it’
produces a confidence region which can  be!
constructed by means of the forecast errori

covariance matrix Z{t|t-1), in the following way: ‘!
|

(z,-2(e]e) 2t]e-D7 (2 -2(e| DX m, 0 (201
. |

Figure 1 compares the 95% confidence tegion for!
the incremental inflows of two reservoirs with thel
two univariate confidence intervals
obtained only using the diagonal elements
z(t|t-1). -

of]

. |
.
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CONCLUSIONS AN

b3

The short-term scheduling of a hydropSwer systemi

is hbased on the inflow forecast volumes to each
reservoir. These forecasts are usually obtained}
through univariate models. However, in a river,

basin the inflows are not only serially but alse
spatially correlated, and by using a multivariate,
formulation®one can produce’ a veqtor of forecasts,.

as well as the| correspondén multivariate,
confidence region Ifhat  take these effects into,

account. This confidence region can"also be used.:

to validate forecasts produced bv specific at-site

AY

.

that where!-—

1
L

1
[
|
I
!
i
H
|
|

kS

s

;

I

i
!
|
I

|
A

§
3

lications. Fort Cellins, Colorado, USA.

Pereira, M.V.F. (1985). Optimal Scheduling of
Hydrothermal Systems - An Overview., - IFAC

Symposium on Planning and Operation of -.
Electric Energy Systems, Rio de Janeiro , -
Brasii.

Yevjvich, V. and Obeysekera, J.T.B.(1985). Effects‘L.

Par-
Water '

of Incorrectly Removed Pericdicity in
ameters on Stochastic Dependence.

Resources Research, 21(5), 685-690.

¥ 1
i

’ |

~

R,
T3

Can

I

ot



-
e

I3

i ! \ ' .
. qy(m /3) T R £ " :
: %0 100 150 200 20 Pt i
! €.5 14 T \ T v | , ; &
L 600 | + {
| 1
i T-T———= 500 I 5- o :
; s0 heoo “UPAGE 1S 1 i
{ f"“‘““' 17 T 775 ) T
i C 4 ‘
é 300 i 1 . i
; . 5.8 - i }
- ¢ ; b3 .
o nd3 [ PN : : !
v j : ' ' 2 - '
Do I | [ ' ‘
Vo . ;
[ i PN X 1 a1 !
j | I ‘ 1
‘ 4.5 ‘ l 1 0 T ¥ 1 T ¥ ,"",_l"-’ k,
SR S - | {-- fmorm == 1 P 8 1 - -
L cotis IR B R | | b Tig. 4. Autocorrelation Function
: ' | b S.0so0rio i
i 4+ i L | ' i I
‘ Tps '\L + - —4— :‘50 L - '
: 4 4.8 s 5.3 l P Tk
fnq, i b3
-~ Fig. 1. 95% confidence region and confidence ;o
intervals for week 1040 at U.Vitoria R I He e e
(qy) and S.0sorio (q4) b
! 19
T4 Tk 0 N _ _
1 fz s i4 's e '7 la lsk
G '.]."‘ -
.54 q TR e —_
A I -3~
37 ) Fig. 5. P. Amazonas - Residual
! Autocorrelation Function
.2+ i MAR (1) Model
Tk
27 it i 8 I 34
o 1 LI i I | 1 T l—'ﬂ—k
1 4 8 12 16
Fig. 2.  Autocorrelation Function
P. Amazonas
. |
NE Tk :
{
6+ [ . .
. i 3
- .
siq 3 f Fig. 6. U. Vitdria - Residual
| r Autocorrelation Function
4 1 { k MAR (1) Model
| 3
.3 ! '
" : | e e e e
: |
24 .
| 1 .
. : ' ; I !
i . C . !
’ o) 7 '
i ‘ 1 fz '3 da s Y& v Is ok
] x|
: 1 4 8 12 16 Fa- .
3 . . . '
: Fig. 3. Autocorrelation Function b - ;
‘ U, Vitoria . | e s e e e J
; N i i
: ot =34 Fig. 7. §. Osorio - Residual
: L Autocorrelation Function
‘ L MAR(1) Model

covther Lo




Y

'-m3s.

v
o
by
[
B
Lo
"o

24
” i r
2 Pk
|
. NB.TYPE TiTLc OF ARTICLE HERE ONPAGE1; | 3
o H ; ; ' o
o N R —————
&7 : I :
! i' . i
§' Tepe Anithor | i; 1A
1 :
2 AL
I
a o0 b T 2z & "W Y5 Tg T %3 ok
& ooy
- S B i
b !
o) | 1
= T .
- :W—T' R — e e ——— et e e
gﬂ | I
' ! . -3 i
o |time : ii ’

¢ 10 20 30 40 S5 60 T B0 S0 100 110 i .

Fig. 8. P. Amazonas - two years of weekly inflow o Fig. 11. P. Amazonas R Residu?l !
measured (-}, forecasted (.) and 68% i Autocorrelation Funcion :
confidence interval MAR(1) model : h ARMA (2,1) Model ;

\ ,
: I i !
i :
I ! I '
i | !
g ;] 5
~ m? /S : {
24 | r T f
o | ‘ k
84 f .37
o i
4 1 -
2 S
=
&1 LTl
o
£ - E |
3 0 i | P |3 3 s s ry Ts "9'
2 } 7 k
LR % R )
24 o .
*~ : { * .
g b B e !
H ! i
1
%- | . -3 .
H 1
time | . .- . .
‘:’0 B 26 1 40 %0 0 10 8 50 100 1n lme | Fig. 12. U. Vitoria - Residual
. CL Autocorrelation Function

Fig. 9. U. Vitoria - two years of weekly inflow . ARMA (1,1) Model
measured (-), forecasted (.) and 687 & . | ’ i
confidence interval. MAR(1l) model fo ! :

! / i
2 Sy / |
- . /
g w/s N b ’ f
o o [ ; |
o . i r /
e ot | k 4 :
. N ) :
Co 1! !
A : o
o o
«,
2] | §
o o | e e T
3_ Yooy i
?\I ! I
o ; ! 1
[= 1
8 o i l
8 [ o y ] Y i !
8. : 1 2 '3z U4 5 Ve 7 'a 9
" | . k
83 ] =1 . i
! . :
8- i
8] '
<] ;v “3Fig. 13. S. Osério ~ Residual
° Y ' Autocorrelation Function:
@ 10 20 30 40 S50 60 TO 80 %0 100 110 i; ARMA (1,0) Model .
I /. 1
. i

Fig. 10. S. Osorio-two years of weekly inflow 1/ ¢

measured(-), forecasted(.) and 687 A '

confidenra intoarual  MAREEY Lamdnil

AR

P

TYPE QUTSIDE TH!S AREA

‘e

ROT

N
S



; T el amir VG ARy Tl LT P
L 203UV SIHL 3AISING 3dAl iGN O . ComHAL DIHS LN Sdic oW 008, -
3 /f/ . ;
.
' ~
N o —
|||||||||||||||| e e R
K
N
“
., ~
N
T
N
.
N
* /f
~
-
~
~
A
.
N
~
-
“
b
S
“
S
T~
-
N
~
N
~
.
N
-
“
“
N
+ ~
.Il..
~
N
-
v
.
lllllllll Tn
e i e e e et e e e i e e e = —— e — — — -
~
- M t @ w o
e m—— L mm mk mwm m— e e e m— — - — - - - - m — mm e— e — — - - - —_— - - wmm . m— - m
o1 PR 3 L
M ; : o —
4 I R . 5
- i Q e T
- _l = Ul Qo —_ 0 &8
p ! ._.._Wou gee B v
~ N w0 o o~
f.“ Im i) -m O~ .m e o
ol —t —~ by — b= -
ol £ Mg e -
[59] 1.t [V~ Mg - —
I -5 Q9w FE ‘g @ =g
- - s 5 3 io3
i ~ ~ QY
s . L) * .
Py . s Lo a e o W.MA
i s.m o,m I
H M @ -
N g, =0 - a3 . oa .
_...“ e o ow o oW e w o
A_.“ O3 Y o ™ o o o 29 5
3 o8k 295 55
bk} -
f’ v 2 0 o re 2h W....cmt
' i ﬁ 209 9 oo P
e e, tf.m.m me O.\_:.l
= = [ 83 =T a il
=1 5 R e O ST 5
us | o 9T & g e - g 9
o B EEEY 28e moo
- \ :
2 o, BEo% 553 g 23
- @
. . iR W g = > ae e 28
.. 1 .moum ‘a0 w E O
«~ I X -1 0o == = I )
yre .
X . @ . ©
n " st ~ v ..Ma.. -
s | - Fa !m ..m.m. o
L] . * . g
E S o= e, 0 : A
! T — L Y T T A\“ s & 0052 052z 0Q0Z 0% QOST O ) % 5 : ° w oy 009E 003 ¥Z 0ovz 00T 00t 00ZI 008 00 O =
ook 0% O2¢ O Oyz o002 ©O31 Oz) 08 v O 4T QOST 0SZT 00OT 0S4 008 082 O £00Y 002¢ 00




