WW(M S%My.os@wv\ on Roak-Trams @WQ)CL
o H\bohoj.uﬁ:’hmﬂo ) Wakaa bots, Onkow @, Comade, T 24-3
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SYNOPSIS

This paper presents a methodology to impose bounds on the yield of
one reservoir in order to keep flood risk below a pre~established level.
This is accomplished by an efficient backward recursion scheme which
mimies the real time operation of the reservoir. Synthetic traces are
used to take the streamflow stochasticity inte account.

The performance of the methodology is evaluated through the case
study of the Tres Marias power plant, which reservoir can be used to
protect a city located 150 km downstream. Flood control bounds were

calculated for different hypothesis regarding forecasted maximum release,
ranging from no information to perfect informatiom,

INTRODUCTION

The operation objectives of a reservoir system primarily designed to
meet conservative purposes may change with time. A typical example arose
when the operating rules of the brazilian hydroelectric system, originally
designed to optimize power production, were reevaluated in order to tak®
flood control constraints into account. '

The methodology described in this paper provides daily bounds on the
yields of one reservoir as a function of its stored volume. These bounds
ensure that the probability of causing downstream damage is kept below 4
pre-established acceptable level.  Downstream damapge is said to occur
whenever the maximum safe yrelease is violated. This usually happens when
the reservoit reaches the maximum volume for normal operation {(vi} and
dam~safety procedures override any flood control restriction (Kelman et
al., 1980). Another critical cituation may take place if a sizeable part
of the total flow at the site to be protected comes from tributaries
joining the main river downstream to the dam. In this case the daily
. maximum release is the difference between the actual maximum flow at the
gite and the uncontrolled flow. In other words; . .the reservoir,maximum
yield depends on a random variable whose probébilit’=dié£riﬁﬁti6n.&i11 be
eotimated according to-the forecasting capability iy Forecast: errors inig
this real time:decision proces$ may ieéd5to5"oﬁﬁiﬁi§tiC?{ﬁéxiﬁpﬁ reledses
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at the end of the rainy season (Costa et al., 1981). A simulation study
compares the stored volumes obtained under different hypothesis regarding
the forecagst model. The difference between these volumes can be used to
asgess the worth of an improvement on forecasting capability.

OUTLINE OF THE METHODOLOGY

Basic Concepts and Notations

h ~ duration of the wet season (days)

v{t) - stored volume (m3) at the beginning of day t,t=1,2,...h

vy ~ maximum stored volume (m3) for normal operation. Dam-
safety procedures {emergency) occurs whenever v{t}>vy

qlt,1i) - total inflow (m3/day) at the reservoir duripg day t for

the 1-th sequence. A sequence is one time series of
daily flow for the rainy season obtained from gauge
readings or from synthetic daily streamflow models.

di(t,v(t)) - outflow discharge (m3/day) necessary to meet the energy
demand

d(r) ~ outflow discharge (m3/day) during day t. Bounds will
be imposed on this variable.

dy(t, i) - maximum outflow discharge (m3/day) at the reservoir
which does not cause downstream damage, An emetbgency
occurs whenever d(t)>dy(t,1).

z ~ maximum gafe flow (m3/day) at the site to be protected,
Notice that z does not depend on the sequence.

y(t+1,1) - uncoutrelled flow {m3/day) at day t+t (T being the time

lag) at the site to be protected for the i~th sequence.
The above definitions lead to

dy(t,i) = z - y(be+T,1) (1)

As y(t+1,1) is not perfectly known, dy(t,i)} will be estimated based
on the best available data as

am(t;i) =z - yB(t+T,i),where . o (2)
yB(t+T;i) is such that ’ ’
PLY(t+T,1) > yplt+r, D]1.] = B(E) A )

1
where B{t) is the acceptable forecast failure probability and I, is Lhe
available information at day t. . L

: ./

Establishing Lower Bounds _/

The evolution of reservoir storage for the time interval (t+1,h) is
uniquely determined by the kuowledge of the initial volume v(t+l), the
inflow sequence i during (t+1,h) and the operating rules for this interval.

Let vg(t+1,i) be a "safe" initial volume, that is, no simulation with
v(e+l, 1)< vs(t+1 i) causes any downstream damage during (t+l,h). The
critical volume for day t and sequence i is defined as

c{t+l,i) .= Max{vs(t+l i)} (4)
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If c(t+l,i) and g(t,i) are kunown, it is possihle to derive & critical
operating rule for day t and sequence 1, This rule will produce for
every v(t) the outflow discharge d(t,i) in day t which results in & stored
volume equal to c¢{t+],i) in day t+l. The critical operating rule is
easily obtained from the continuity equatien

dit,i) = v(t) + q{t,i) - elt+1,i) (5)

Since c(t+l,i) and q{t,i) are supposed to be known, equation {5) can
be seen as a linear relation between d4{t,i) and v(t) of the form

d(t,i) = v(t) - b(t,i), where (6)
b{t,i),= c(t+l,1i) - q{t,i) | (7

Figuré 1 shows ecritical operating rules for a random sample of 10
sequencesr

&t

Figure 1. Critical Operating Rules

Suppose point Py represents a feasible outflow dj for v(t) = vi. One
can see that the four critical rules to the left of Py requlre outflows
greater than di (for v(t) = v]) in order to avoid emergencies in (41, h)
Since all sequeﬁces are equally likely, decision d] will lead to
emergencies in four cases out of tem, i.e., the probability of emergency

for the point Py can be estimated as 40Z.

Any point located in the 459 line that passes through P (Figure 1)is
associated with a risk equal to 40%. All points to the "left" of this
iine will be associated with lower risks while points to the "right" will
lead to hlgher risks., In other words, this line defines a lower bound on
the yield in order to keep the probablllty of havxng an emergency in the

1nterva1 (t+1 h)- jower than 40%: . ‘
‘{k -c’( ‘) s

A1l crltlcai rules are unigquely deflned By any of their points, fof



example, b{t,i). The set {b(t, 1) i=l;...] can be seen as one pample of a
random variable B(t). If a{t) is the acceptable probability of
downstream damage in the interval (t+1,h), then the value b*(t) associated
with this risk will be defined by

P{B(t)<b*(t)]) = a(t) (8)

The critical rule associated with b*kt) constrains the reservoir
yvield to be at least v(t) ~ b*(t).

Calculation of the Critical Volume for Day t

The actual release rule of a reservoir depends on many factors such
as the energy load and storage in the other reservoirs. This rule will
be approximated for each sequence by a function of the stored volume, as
shown by line ABCDE in Figure 2. 1t should be stressed that the
approximate rélease rule is "tdilored" for sequence i, This means that
the algorithm mimics the real time decision process.
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Figure 2. Approximate Release Rule (Solid Line) for
Sequence i on Day t
!
In Figure 2; dg(t) represents the outflow necessaty to meét the
enérgy demand.  « -

For a stored volume in the range [O iV ] there is ‘hot enough water to
meet the energy demand. In thé range [vB,v ] the energy demand can
already be met and the stored volume is low énough not to activate any
flood constraint; In the range [v SVp ] one hds to yield mere tham the
necessary to meet the load in order Lo keep the probablllty of flood
events in the intérval (t+1,h) equal to the target risk, aft).

For a stored volime larger than vp, one is bound by dy(t,i). This
restriction is calculated by equation (2) In this case the probability
of an emergercy in thé interval (t+1,h) is grester than o(t).
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Let v* be the interception between the approximate release rule and
the critical release rule for sequence i, One can see that if v(t)>vf
then v(t+1)>c(t+l,1i). The consequence is that some emergency will happen
in the interval (t+1,h), for the i-th sequence,

Let v* be the Lnterceptlon between the actual safe release (not the
forecasted one) and the approximate release rule, Again for sequence i,
one can see that whenever v(t)>v} an emergency will occur exactly on day

t due to the difference between the actual and the forecasted safe
release.

The definition of c¢(t,i) is met by equation (9).
c(t,i) = min{v%, v#} (9)

The Algorithm {
1

Figure 3 describes the main aspects of the algorithm,

START

Initialize b(h,1)=vM,1=1,72,...N and D*(h}=v}, CHEL

caleculate c(h, 1) i=1,2,.,.N where N is the sample
size '
For t=h-1 to 1 by -1
For i=1 to N
b(t,i) = e(t+l,i) - qft,1)
I
A
Apply equation (8) to obtain b*(t)
— For i=] to N

.k I
o dyle,i) = z-yg(L+1,1)

pefine the approximate release rule using b*(t),
aM(t,i) and other known constraints

-

e{t,i) = min{vi,vﬁ}

END

‘Figure 3: The aigoiithm ;



TRES MARIAS CASE STUDY

‘

* Tres Marias is a hydroelectric power plant (388Mw) with a large
reservoir (19 x 109m3) located in the Sao Francisco River, Brazil. A
flood constraint must be imposed to protect Pirapora, a city located 150
km downstream. Nearby flows greater than z=4000m3/s will cause some
damage to the city and were considered as the flood constraint. The
travel time from the dam to Pirapora is approximately one day (t=1).

The flow coming from uncontrollable tributaries can exceed 2000m3/s
during the wet season (December 1 to April 30). Gauges located on the
main tributary can be used to provide on-line forecasts.

A constant value of 657 m3/s is considered as the ocutflow necessary
to meet the energy demand, i.e., dp(t,v(t)) ='657 m3/s, ¥(t,v(t}).

Since the stochastic process "occurence of flows greater than z" can
be well represented by a Poisson process (Shen and Todorovic, 1976) it is
reasonable Lo define the "occurence of emergency' also as a Poisson

process, Expression (10) will then represent the target risk.
alt) = j~eA{t=h) (10)
The return period for am emergency in (10) is given by (uﬂO)}“ln In

this case, h=151 days.
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Figure 4. Evolution of b* for Different Forecasting Accuracy
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Figure 4 shows the evolution of b*(t) calculated for a retutn period

of 50 years and for different hypolhesis of forecast accuracy. These
results were obtained applying the algorithm over 10000 synthetic
bivariate daily sequences (inflow to Tres Marias and sum of uncontrollable
tributaries}. The adopted stochastic model {5 described by Kelman (1977).
The daily release rule was approximated as.shown in the previous sectlion.

The forecasted maximum release dy(t,i) was sampled together with each
synthetic uncontrollable daily flow. Appendix A describes the sampling
procedure in detail.

The value of p in Figure 4 corresponds to the correlation between
the forecasted value and the real one: p=0 means "no information"” and
p=1 means perfect information' (dy(t,i) = dyt,1)).

Figuie 4 shows that the values of b*(t) increase with the degree of
certainty as regards dy(t,i), measured by 2.  This means that the poorer
the forecast, the more severe are the regervoir's yield restrictions.

Improvement of forecasting techniques helps to increase the
probability of getting a filled vp reservoir at the beginning of the dry
season without increasing the risk of emergency. In order to evaluate
the expected stored volume at the beginning of the dry season under the
three values of pZ, a simulation study was performed with 1000 othexr
sequences. The initial volume, v{(1l}, was set to 0.43 vy in all
gimulations. This volume corresponds to b*(1} for p2=0.75. Table 1
summarizes the results.

Table 1. Simulation Results for 1000 Sequences

02 E[v(h)] : © EMERGENCIES

(Zvm) - (%)
1.00 61.15 0.03
0.75 57.83 2.5
0.00 ) 36.97 7.6

CONCLUSIONS

!

1) The output of the algorithm is a set {b*(t),t=1,2,...,h]. The

jower bound on the reservoir yield on each day t is equal to
minfQ,v(t) - br(t)]}. '

2) The b*(t) ate calculated in such a way that several features of
real time operation are taken jnto account (forecasts, upper
bounds on the yield and energy production).

1) The results of Figure 4 shmwthatbf(t) increases with the degree
of information about the uncontrollable flows.
e . e Ly
4} The simtlation study confirms that, conditioned to a specific
initial voluwe, flood mitigation capability and the expected
. stored volume at the end of the wet season increase with pZ.
" These expected stored volumés can be converted into monetary units
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(using the value of water for conservative purposes) and compared
with the costs of the necessary forecast systems to provide the
specific p2.

AFPENDIX A

FORECAST MODEL SIMULATION

The basic information provided by a Forecast model is the conditional
distribution of the variable of interest, Y, given the state of nature,
X, which can be measured in advance,

-

Let (X,¥) be bivariate normal distributed and p the correlation
between X and Y. In this case the conditional distributien fylx(y|X=x)
is also normal distributed with moments ! . '

Byl = vy + p ?ﬂ (% = ug) : (AL)
X
OZle = OZY(l - p?) (A2)

Without loss of generality, let

Oy = P Oy v : ) | (A4)

In this way,
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.As presented in the outline of the methodology, given the gtate of- J

nature, X=x; a decision~maker may use a quantile, ¥gs of the cdﬁ&itional,’j_
+ distribution such that - : st )

PlOyg|x=x] =8 - | (46)
therefore, L ";
. . !
B !

Y = Wy|x + ug oy|x \ J (A7)

¥
where ug is the corresponding quintile of the unit normal.

Using (A2), (AS) and (A7)
yg = x + ugoy(l-p2)1/2 (A8)

The algorithm presonted in the outline of the methodology requires

- samples of (y,yg). For the case study, y is the uncontrellable flow

produced by the.adopted stochastic model. The value y% were obtained
1 1] . » *
using the conditional distribution fxly(le=y), a norma

VoY

distribution witq
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mean Yy + p2(y—uy) and variance pch(l-pz).

Using (AB),‘tﬁe equation to obtain yp is

YB = Wy * P20y = uy) + poy(1 - p2)1/2 €'+ ugoy (1 - p2)1/2 (49)
where € is sampled from the unit normal distribution. |

The log transformation of the incremental flowg (Y) wag épplied to
achieve normality, u, yag set to 2,33 which is the corresponding value

of the observed maximum incremental log-flow of the historical record.
/

/
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