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ABSTRACT

It is presented a methodology for the design of flood con
trol multireservoir systems which uses linear programning. The
methodology incorporates & set of deterministic restrictions on
the flood control volumes derived by Marién (1984) and a prob-
ability of failure concept which 1s taken into account with the
help of multisite daily synthetic streamflow sequences.

INTRODUCTION

A flood occurs in a river section P just below a  reser-
voir Rt whenever the flow exceeds a critical value Q. An
adaptation of Rippl's Method (1883) allows one to define a fea
sible region for the flood control volume Ki sufficient to
ensure the flow is always below Q, given an inflow sequence
a(1), q(2), ..., alh), as
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where K1 is a maxdmum volume.

Mari¥n (1984) generalized this result for the case when
one can count with flood control volumes at several sites  Up-
stream from Ri. Assuming instantaneous flow propagation,Marfén
found a feasible region for the vector K=[K1, K2,...Kn] defined
as
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where,
j is the site index, j=1,...,0
3 3s the local inflow to site j (corresponds to the catchment
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between site j and the Inmediately upstream sites);

u is a subset of In = {1, 2, ..., n}

U is the class of all subsets u which generate a "normal" par-
tial reservoir system as defined by Mari¥n. A partial reser-
voir system is mormal if and only if
a) the most downstream site (j=1) belongs to u
b) if j#1 and j € u then there is £ ¢ u such that g is immedi

atly downstream from j; -
There are many constraints of type (3) as there are elements
in U.

This paper expands this result in two ways., The first
expansion concerns an objective function to be used together with
the constraints defined by Mari¥n in order to find the optimal
K* vector. The second expansion concerns an algorithm to calcu
late the optimal K* vector associated to a given probability of
flooding at P. The greater is the probability the smaller will
be the flood volume requirements. This algorithm considers a
large number of multivariate synthetic daily streamflow Se-
quences as the set of all possible inflow sequences.,

METHODOLOGY

Consider a system of n reservoirs Ri,...Ry and a river
section P downstream of all reservoirs at which the flow should
not exceed with a given probability a critical value Q. Let §
be set of all possible inflow sequences to the reservoirs.

Consider one of the constraints in (3). It is possible
to find among the sequences belonging to the set S, a specific
inflow sequence which will provide the greatest value for the
right hand side of this constraint. Therefore all other Se~
quences will provide redundant constraints.

The set of all non-redundant constraints in (3) are given
by:
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Let's assume that the construction cost for each dam site
Is proportional to the flood control volume. The total construc
tion cost is given by £ c¢.K.. Therefore an optimization prob
km can be defined as: J h

minimize F(K) = © ¢, K. ' (6)
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The linear programming al orithm provides not only the
optimal K* vector but also oF . Each constraint in  (7)
o 51% K*
is associated with a particular sequence s e S. This constraint
can be relaxed excluding s from S. In this way the old by value
is replaced by the first ranked bu value with S substituted by
S/{s} in equation (8). A new application of the linear program-
ming algorithm will provide another optimal K*vector which will
not be flood proof for the excluded sequence” but will have
smaller total cost. An estimate of the change of the minimal
cost that will be achieved by excluding s is given by:

oF

AR, = 55; K* Aby (9
The obvious choice is to exclude from S the sequence s that
have the greatest A Fy.

The relaxation procedure above described is repeated  as
many times as required in order to get the solution associated
with the given flood probability. For example, assume that
there are 1000 sequences initially in S and the required return
period for downstream flooding is 25 years,then 40 cycles would
be necessary.

EXAMPLE

The algorithm was applied considering a system with eight
eservoirs sites located in the Parand Basin at southeast of Bra
7il (see Figure 1). The study was done with the help of 1000
"ears" (October,1 to April,30) multivariate generated local
diily flows (Kelman et al.,1985). It was selected a probability
of flooding of 25-1 for an upper 1limit outflow from the system
of 12000 m® /s. This flow at the outflow point of the system
has in natural conditions a return period of 1.17years. It was
considered equal constructions costs coefficients (c4=1¥%j) .
Table 1 shows the optimal flood control volumes obtaihed at
each iteration of the procedure. Figure 2 shows the relation
between the total flood control volume for the system (in this
case assumed proportional to the total cost) and the probabil-
ity of flooding.




Table 1. Optimal Flood Control Volumes at Each Tteration

Probability I.Solteira S.Simio Iturbiarg Emborcacio A.Vermelha Marimpondo M.Moraes Furnas Total Volume

0.000 4128, 2436, 3645, 5200. 238, 10569, 27040,
0.901 2835. 2472, 1949, 4527, 917, 8219, 21186.
0.002 294, 1298, 2532, 817, 7891, 20758,
0.003 2694, 1298, 2532, 917. 6081, 18947,
0.004 2694, 1298, 2532, 217, 6074, 18941,
0.008 2604, 1298, 2532, 917 4759, 17615,
0,006 2694, 1953, 551, 7059, 17441,
0.007 1953, 551, 6179, 16561,
0.008 1953, 551, 5031, 15413,
0.009 1955, 551. 4624, 15006.
0.010 1953, 551, 4131,
0.011 1953, 4051,
0.012 1953, 4005,
0.013 1953, 3780.
0.019 ; 1953, 3521,

3257,

2813,

274,

2690,

2530,

2384,
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FIGURE 1-RESERVOIR SYSTEM
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FIGURE 2. Relationship between flood control value and
the probability of flooding

CONCLUSIONS

The present methodology 1s useful in the design of f1ood
control multireservoir systems. The flood control volumes aré
optimally calculated in @ linear j framewoTk which
+akes into account the probability stream flooding. Mul-
tisite daily synthetic streamflow sequences are an essential
input to the methodology -
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