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ABSTRACT

There are several stochastic models available in the
literature developed to represent the one-site daily streamflow
process, (Yevjevich, 1984). The one proposed by Kelman (1977,
1980) is based on the assumption that the rising and the
falling 1limbs of daily hydrographs ought to be modelled
separately because they translate different physical
processes. It 1is presented an extension of this approach, the
DIANA model (Kelman et al,,1983) which was developed for flood
control and dam safety studies in Brazil. The DIANA model
differs from the previous version in several aspects, the main
one is that it allows a multisite generation of syathetic
sequences. The runnof Q(t) on day t is considered to be the sum
of two components Q{t) = U(t) + 0(t), where U(t) is a seasonal,
auto-correlated, non-negative intermitrent process that
represents the rising of hydrographs due to precipitation
events. Since precipitation is not explicity considered in the
model, no precipitation data is used either to calibrate the
model or to generate synthetic series. U(t) is assumed to
result from the censoring of a transformed normal AR(1)
process, Z(t). O(t) represents the emptying of the watershed
which is assumed to be 0(t) = K Q(t-1) where K 1is a random
variable upper bounded by a model parameter, which is smaller
than 1. The prebability distribution of K depends only on
v(t). The multivariate extension is accomplished by modelling
the vector Z(t) (each component corresponds to a site) by the
approach suggested by Matalas (1967). The model 1is tested for
elght cascaded gauging stations of South-Southeast Brazil.

INTRODUCTION

Therce are several problems in  the engineering practice
that demand the discretization of streamflow in a time interval
as short as one day. Typical examples are the calculation of
reservoir space requirements for flood control (Beard, 1968),
reliability  calculation for pumped storage  reservoirs




(0'Connell and Jones, 1978) and dam-safety analysis (Kelman and
Damazio, 1983).

The development of operational stochastic models for daily
streamflow series has encountered some difficulties. 1In
general, the adaptation of traditional time series meodels, as
E ARIMA models, im modelling of daily streamflow fails due to
5’ data large skewness, the strong seasonal effects and different
behaviour of the rising and falling limbs of the hydrographs
(Kelwan, 1976 and 0'Connell and Jones, 1978).

Kelman (1976, 1980) obtained satisfactory results by
separately modelling the rising and falling 1imbs of the
hydrographs. The rising limb was modelled gimilarly to
precipitation as an intermittent process and the falling limbs
was conceived as the result of the emptying ouflow from linear
reservoirs.

In this paper it is presented an extension of this
approach, the DIANA model, which was developed for flood
control and dam—safety studies in Brazil. The DIANA model
differs from the previous version in several aspects, the wain
one being the allowance to multisite generation of synthetic

sequences.

MODEL'S DESCRIPTION

The runoff Q(t) on day t 1s considered to be the sum of two

components:
qle) = ule) + o(t) 3 t=1,24... (1)
Conceptually, y{t) represents external factors {(e.g.?

precipitation) with intermittent characteristics that affect
the rising of the hydrograph. On the other hand, o(t)

represents the persistent emptying outflow from the watershed.
As only the total flow Q(t) time series 18 available, some rule
is necessary to split Q{t) in 1ts components.

Whenever qt) > aq(t-1) let wus assume that u(t) > 0,

A e (0,1) being a watershed characteristic recession constant.
For any A, the following relations hold:

u(t) = 0 if  qlt) < Aq(t-1) (2a)

olt) = qlt) = Aqle=1) if q(e) > Aglt-1) (2p)

In this way, whenever ult) > 0 the total flow is given by

q(t) = u{t) + Aqle-1) H ult) > 0 (3

and so, by the use of (1)

oft) = Agq{t=1) ult) > © (&)
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On the other hand, whenever external factors are not active
(u(t)=0) the total flow is only given by 0(t). In DIANA model
0{t) is considered to be equal to the outflow of a lipnear
reservoir with stochastic behaviour. This behaviour is modelled
setting 0(t) as a random fraction K £ A of the previous flow.

q(t) = o(t) = k q(e-1), k € A, u{t) = 0 (5)

The approach can then be described putting together
equations (1), (3) and (5):

q€t) = u(r) + k& q(e=1) ©{6)

u(t) = 0 + k < A {6a)

u(t) >0 +k =2} (6b)

There are two aspects to consider in the modelling of the

U(t) process:

i) Its marginal probability distribution (it has a
probability mass p at u(t)=0).

i1} The external factors that govern the rising limbs of
the hydrograph may result from the action of persistent
meteorological processes (e.g. cold fronts). The modelling of
the U(t) process must be conceived as reproducing this induced
time persistence.

The previous version of the wmodel solved these two
questions using a power transformation of U(t), U(t) = (Y(t))%
The Y{t) process was considered as the result of censoring at
the origin an AR(1) process with N(|,0) marginal distribution.
This parametric representation of U{t) allowed the estimation
of all parameters (including o and p , the lag one
autocorrelation of the non-censored AR(1) process) by a
pseudo maximum likelihood procedure or by the method of
moments.

This parametric approach is advantageous when dealing with
flood studies in flashy rivers, where it 1is necessary an
extrapolation of the daily increments of the flow. In large
basins, floods result from the coincidence of several events
which are not necessarily exceptional. Indeed, a major flood in
a large basin is usually shaped by the persistence of minor
daily increments of flow. These increments can already be
present  in the sample. In this case wusing the empirical
frequency distribution of U(t) one has no need to make any
assumption regarding the shape of the distribution. This is the
adopted alternative in the DIANA model. Persistence in the
DIANA model 1is also modelled through an AR(1) process with
censoring. This process 1s mapped into  U{t) using a
non-parametric relationship that preserves the empirical
distribution Fy(.).

Let Z(t) be the AR{1) process defined by:
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z(t) =p z(e-1) + /1~ &(t) (7)

where €(t) is a normal distributed white-noise and P is the lag
one autocorrelation of Z{t).

y(t) results from imposing a censoring in Z{(t) and 1is
defined as:

(8a)

y(t) = z{(t) if =z(t) > B
ylt) = B if z(e) < B (8b)
g8 =% 1(p) “(8c)

where B defines the censoring interval (-, f), $®(.) 1is the
¢.d.f. for the standard normal distribution, and p = P[u(t)=0].

The relationship between U(t) and Y(t) is obtained solving
the equation Fylu(e)) =9 (y(t)).

When there are £ > 2 daily streamflow series to be
modelled the spatial dependence is introduced in the model just
assuming a multivariate AR(1) process: .

Z{t) = A Z{(t-1) + B e(f) (9)

where Z(t) is the vector [Zl(t),Zz(t),...,Zg(t)]T, Zi(t) is the
AR(1) process that corresponds to the i-th hydrograph, and e(t) ;
is a vector of 2 standard normal independent deviates.

The A and B matrices should be chosen in order to resemble
f the persistence in each hydrograph and the lag-zero covariance
° between them represented in the covariance matrix Mo of Z{t).

The generation procedure is performed in the following
steps:
1. Sample the vector Z{(0Q) = [zl(o),...zR(O)]T from the
standard multivariate normal distribution with M, as the
covariance matrix.

2. Sample initial total flows q.(0); i=1,...%, from an
empirical multivariate distribution Fg,(.).

3. Set t =1

4, Sample the vector &(t) = [€i(ct), ... ,E (t)] from the
standard multivariate independent normal d1qtr1but10n.

5. Calculate Z(£) = A Z(t-1) + B €(t)

6. For each series calculate yi(t) = max[Bj , zi(t)] and
obtain uj{t) solving Fy; (ui{t)) =0 (yi(e))

7. If uylt) > 0 then qi(t) = uilt) + Aiqile-13, if uilt)=0
then sample kl £Ai from an empirical distribution Tk ()
calculate qj(t) = kjq;(t-1).

8. Set t = t+!1 and return to step 4.

ESTIMATION PROCEDURES

Given a multivariate daily streamflow series {qi (t),
= 0,h; i=1, &} it is necessary to estimate:
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a) The characteristic recessions constants (A3)
b) The frequency distribution functions Fy;(.) and Fk£.);
c) The censoring interval limits B; for the Yi(t)processes

and

d) The matrices A and B.

Agsume that the A,'s are known. Then equations (2a) and
(2b) can be used for each series to calculate the corresponding
uj (¢}, €=1,2,...,h series. Therefore Fyf.) and Frf{.) can be
obtained in a straightforward way. Moroever, let mj be the
number of zeros in the wu;(t) series. The estimate of Bi is
given by:

(8;) = (10)

The estimation of the matrices A and B is done considering
the matrices Mo = E [Zt ZE ] and My = E[ Zt ZE} given by:

+1
my(i,3) = 1; i=] (11a)
mo(i,j) = p, .(0), i#] (11b)
1,1
my{i,j) = pi,j(l)’ i=j (11e¢)
my(i,3) = pi’j(o) pi’£l), 1#] (11d)
where p. (1) is the lag-one autocorrelation coefficient of

z; (t) andl’éi’j(o) the lag zero cross—correlation coefficient
between z;{(t) and Zj(t). The parameters P; ;(0) and pi’i(])
will be estimated” from a realization of tﬂ% censored process
YCt),

Let t

t2""t be a set of indices such that ui(tl)

1’ h
§~ui(t2>"'i-ui(th)' The function that relates yi(t) and ui(t)
is given by ui(t)= giIQ (yi(t))[. In this function, for each
u,(tj)> 0 there is an associated interval ldj’ejl which is a

1

function of the index j, given by:

-1

o

@(dj) =S s 2w+ (12a)
Bep) = jzm+ | (126)

For u;(tj) = 0, there is only one associated value:
yi(tj) = Bi’ jEm (13)

The function g is useful in the step 6 of the generation
procedure, as it gives ui(t) = gi[ @(yi(t)]. On the other hand,
at the estimation phase it is not possible to obtain exactly
the value of yi(tj), when uj (tj) > 0. The adopted approach

consists in associating to each ui(tj) > 0 the median point of
the associated intervals:
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B(y; () =-;-[<1>(dj> S ACPHIEN LT (14)
With equations (12), (13) and (14) it 1is possible to
obtain for each site i1 a realization of the process Yi(t). .
1f the null values of uj(t) are neglected, pi, i(1) and
Pi,j(0) can be estimated from the contiguous pairs (yl(t)> B:s
yi (£+1) > B for the estimation of pi,i(1) and (y (t) > B. ;
x y](t) > B:) for the estimation of pj j(0). These palr%1 are
‘ considered as random samples taken from truncated {identically
and non-identically)} bivariate standard normal distributions. _
In the appendlx it is described an estimation procedure which X
can be used in both cases. Given a set of estimated pl i{1) and X
(O) equationq (11) are used to construct Mg and M1 . A and
B are then given by: ¥

R A = MiMg® (15) ]
¥ T - 4
BB = Mg - M1 Mg ' My (16) F

For the solution of (16) it 1is adopted the principal
components solution (Matalas, 1967). The solution of (15) and
(16) imposes some restrictions on Pi,i(1) and p; :(0) in order .
to guarantee that M, and M, - M M1 ME are poqlglve definite. \
These conditions are aqqured if the matrix V given by

B Z T T 4
v=Ek1[1I ;:1] [ zt+1 zt]] an !

- is positive definite. It may happen, due to sample variation,
’ that the set of estimated correlations P; ;(1) and P; :(0) do
i not present a consistent pattern of correlaflon. In thlq case
matrix V can be slightly modified (Fiering, 1968) rendering it 4
positive definite. 3
No formal procedures are available for the estimation of
" the characteristic recession constants and  they have been
selected based on trial-and-error. Convergence is accepted when
some statistics taken respectively from the historical and the
synthetic series are sufficiently "close"

It is 1important to note that in the case of the
non-parametric modelling of the uj{t) marginal distributions,
the chosen values for Ai define the maximum possible generated
total flow, Qmax,i. It Can be demonstrated, using (2), that:

Ei u (A

o

- max,i- i
Qmax i 1-X; (18)

where umax,i(ki) is the greatest value in the sample of uft)'s.

Example

The allocation of reservoir space for flood control in a
cascaded system of reservoirs can be done with the help of
synthetic multivariate daily local inflow series. The study of
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the reservoir system of the Parana River (southeast of Brazil)
was done by the multivariate generation of 1000 '"flood
seasons' (October 1st, to April,30th) of local daily inflows to
eight reservoirs (gsee figure 1). In order to consider the
seasonal effects, the model's parameters were estimated using
seasons of 14 days, with the exception of the characteristic
recessions which were assumed constant along the seasons. The
historical local flows were obtained by taking the differences
between total flows, using representative time-lags. Results
for only three reservoirs will be shown.

The confidence on the results produced by any model is
based on its capacity to produce synthetic series that are
otatistically indistinguishable from the correspondent
historical series. This validation should be done by comparing
relevant properties of the generated series. The set of
relevant properties should be chosen in view of the application
one intends to do with the generated series.

As in this example one is concerned with flood contyrol
the selected properties are:

a) daily flows first and second moments seasonal

variation;

b) annual maximum flows frequency distribution;

¢} mean, variation, skewness and kurtoses of daily and

annual maximum £lows;

d) flood volume required to regulate the mean historical

annual maximum flow;

e) daily flow correlograms.

Figures 2, 3 and 4 show the seasonal evolution of the mean
and of the standard deviation for the daily local flows.
Figures 5, 6 and 7 show for each of the reservoirs three

hydrographs:
1- The historical hydrograph with the maximum daily
flow.
2- A generated hydrograph with the same maximum daily flow
as in 1.
3- The generated hydrograph with the maximum generated
daily flow.

Figures 8, 9 and 10 show the correlograms of historical
and generated series. The results are generally good with the
exception of the 8ao Simdo series. Table 1 compares the
historical and generated lag-zero cross correlations between
local flows in different sites. It can be seen that the model
is still underestimating the spatial correlation matrix,
although the results obtajned are reasonable approximations.
Figures 11,12 and 13 show the empirical generated and
historical annual maximum daily flow frequency distribution.
The goodness of fit may be confirmed through the chi-squared
statistic obtained with 5 discretization intervals (1.3,3.1 and
3.6). The hypothesis that the historical series of maximum
flows are random samples of the probability distribution
function defined by the model cap not be rejected. Tables 2,
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3 and 4 compare some statistics obtained from historical and
synthetlc sequences. It can be seen that only in the second
reservoir the seventh statistic shows 31gn1f1cant dlsagreement
between the generated and the historical series.

CONCLUSIONS

Stochastic daily streamflow models have seldom been
reported as wuseful in flood studies. Few exceptions could be
mentioned, as for example Bulu (1979) and Kelman and Damazio
(1983), Perhaps the lack of popularity of daily streamflow
models is due to the skepticism about the capability of these
models to produce synthetic sequences with the same statistical
properties as the smngle observed time sexies, The case study
of the present paper is an example that the skepticism may not
be fair. In fact the writers have been successfully performing
several flood studies in Brazil (for example, Kelman et al. 1985,
this SympoSlum) with the help of dally synthetlc sequences. How
ever it must be noted that this experience is still restricted
to large basins, where exceptional floods can be seen as the
joint occurence of events that individually are not exceptional.

APPENDTX

Consider a standard bivariate normal  distribution with
correlation coefficient p, trumcated at x = h and y = k . Then
the following equation holds (Rosenmbaum , 1961 ):

(h+k)p? ={ (h+k)my1~h k(myp+mge1) tp-(h+k)~hk(my o+moy) +kmp o+hmpz= O
where . {an)

x> expl[- TT(Xzb 2pxy + y2) /(1 - p?) ]

o™ 4?4? dxdy

2Vt = p2 Lih,k,p)

w yl expl[=- é%{xz - 2pxy + y2) /(1 - p?) }
m .= [ [ dxdy
2mv1 - p?  Lih,k,p)

xy expl- 7}(X2 - 2pxy + y2) /(1= P2} )

myiL= f dxdy
bk 2nvt - p?  L(h,k,p)
w expl- -%— (x2 - 2pxy + y2)/(1 - p?) 1]
L(h,k,p)= %.& dxdy
21 - p?

Also:
ph h -~ pk
my oL (h k D)u Z2(h)Q l: :l + DZ(k)QL/ :I (A.2)
-p2?
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m“L(h,k,p)=pz(h)QE‘ "DZ‘J + z(k)QLL._'_w:mj (A.3)
P

e V1-p?

mp ¢ L(h,k,p)= L(h,k,p) + hz(h)QEi__‘ _p_h—\ +
V1 —p?

Vam

2 h - Pk pyl - p? /2~ 20hk + k%)
+ p kz(k)Q[/_{___Hz_:l + z [ T = (A.4)

m L(h,k,p) = L(h,k,p} + pzhz(h)QES_:__Pﬁ +
02 T2

¥ | + kZ2(k)Q

h - pkf o vi-p® o E (b’ '12phk2+ )i (a.s)
V1 _02 ‘/2]'[ - P

where:

i
f Z(x) = —m exp(T5-)

n

Q(x) gf z(t)dt

The adopted estimation procedure for , p is:
a) Obtain a estimate of mii wusing —LX.¥.
b) Arbitrarily choose p n B
¢) Use equations (A.2) to (A.5) to obtain mig, Mo1 ,  Mzo0
and mgg
d) Solve (A.1) and obtain the roots py and P2
Make p*=py if |p-p1| < |p-02| or p*=p, else.
e) If p*#p set p=p* and go to step (c)., If p*=p stop.
Observation: Due to sample variation, equation (A.1)  may
not have real roots or have roots |pi > 1, i=1,2. In  these
cases it must be used another starting point (step b).
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Table 1 ., Lag-zero cross correlation comparison
(Above principal diagonal: synthetic estimates)
(Under principal diagonal: historical estimates)

Emborcagao Itumbiara Sao Simao
Emborcagao 1,00 0,68 0,50
Itumbiara 0,87 1,00 0,59
Sac Simao 0,71 . 0,63 1,00
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and one

historical sequence,

Table 2. Comparison between statistics of 66 synthetic sequences 3
each one of them of 15 1
flood seasons. In parenthesis statistics obtained with i
1000 synthetic sequences. Emborcagao.

DAILY FLOW STATISTICS

mean std.dev. skew

kurtosis

record

historical

645. 445, 1.53
(642.) (448.) (1.86)

6.09 31520.
(9.87) {6380.)

synthetic
minimum 573. 378. 1.07 4,00 2550.
synthetic T T B T o
average 642. 44s, 1.75 8.84 3790.
synthetici
maximum 707. 575. 3.08 23.65 6380.
PIEYNTSHIST] 0.455 0. 424 0.621 0.727 0.530
ANNUAL MAXIMUM STATISTICS Regulationﬁ
Va " mean std.dev. skew kurtosis Volume
hisP®ical 1960, 754 0.8 2,51 6550+
(2080.) (740.) (1.70) (7.14) (38200
synthetic
minimum 1720. 384. ~0.67 1.70 1380,
synthetic
average 2080. 680. 1.02 3.91 11600
synthetic
maximum 2730. 1300. 2.66 9.59 38200

P [SYNT HIST] 0.667 0.333 0.909

0.773 0.727




Comparison

sequences and one historical sequence, each
them of 14 flood season,

between

statisti

In

cs of 7

parenthesis

synthetic
one of
statistics

obtained with 1000 synthetic sequences. Itumbiara

DAILY FLOW STATISTICS

mean

std.dev.

skew

kurtose

8 record

historical

1350,
{1360.)

867,
(8562

1.70
(1.55)

7.23
(7.18)

6480.
(10400.)

synthetic
minimum

1190,

700.

0.93

4240,

synthetic
average

1360,

850.

1.48

synthetic
maximum

1510,

1040.

2.32

13.06

plsynT>HI

ST] 0.648

0. 380

0.155

0.197

ANNUAL MAXIMUM STATISTICS

Regulation

mean

std.dev.

skew

kurtose

8 Volume

historica

1 3830.
(4180,

1550.
(1160.)

0.15
(0.95)

1.85
(4.45)

14200.
(54200.)

synthetic
minimum

3450,

495.

~-0.94

.51

1130.

synthetic
average

4180,

1080.

0.53

2.98

15100.

synthetic
maximum

4940,

9.06

54200.

P [SYNT »HI

ST ] 0,887

0.873

0.479

.gﬂ?!*ﬁgm



- Table & . Comparison between statistics of 40  synthetic
- sequences and one historical sequence, each oope of
them of 25 flood seasons. In parenthesis statistics
obtained with 1000 synthetic sequences. Sao Siman

T BAILY FLOW STATISTICS

T mean  std.dev. skew Kurtoses  record

Historical  900. 606.  1.66 8.37 7150.
(932.) (653.) (1.67) (9.07) {10900.)

;yn the t 1 [ - T T
minimum 886. 592. 1.13 4.89 4320.
s yl’l t he t 1 C T B
average 932. 652. 1.63 8.66 6750
synthetic"f - T o
maximum 963. 715. 2,34 18.10 10900.
ﬁTé?NTSﬁi§fi"6;636*“""f'df§§6“'4__6f42§#"”"”6“153_ 0.500

mean std.dev. skew kurtoses Volume

| i historical  3220. 1180, 1.42 5798 5210.
: {3540.) (110, (2.19) (9.72)  (20700)

average 3540. 1040.
synthetic
! maximum 4050. 1650. 3.16 14,00 20700.

Bt PISTNT>HLST] 0.900° 0.375 0.525

0,400 0.750

;
3
p




