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: THE USE OF PROBABILISTIC CONSTRAINTS IN RESERVOIR OPERATION
POLICIES WITH SAMPLING STOCHASTIC DYNAMIC PROGRAMMING

JERSON KELMAN*
LISA A. cooPER¥, ERIC Hsu?, SUN-QUAN YUAN*

The role of mathematical simulation and optimization models in
hydropower planning at Pacific Gas and Electric Company is discussed,
and some of the models are described. Applications of sampling
stochastic dynamic programing to develop reservoir release rules for
the. simulation models are presented. Probabilistic constraints on the
minimum reservoir storage value are explicitly considered. The models
for PG&E's North Fork Feather River hydroelectric system are used as an
example. )

Introduction

Electric generation planning is a compleX process involving
forecasts of loads and projections of available resources, Planners in
california, where hydroelectric facilities constitute a significant
portion of a diverse resource mix, face additional challenges. Accurate
modeling and dispatching of hydropower operation requires consideration
of not only system constraints and the scheduling of other resources,
but also streamflow variability and economics. The variability of
hydrologic conditions creates uncertainty in the available
hydroelectric capacity and energy.

To help planners deal with this uncertainty, many mathematical
simulation models have been developed (Yeh, 1985), operating on either
historical or synthetic streamflow data. The seasonal variation of
streamflows makes the scheduling of hydroelectric generation another
challenge. Optimization models have beén developed to solve this
scheduling problem using deterministic nonlinear programming (Ikura and
Gross, 1984) and stnchastic dynamic programming (Loucks et al., 1981;
Stedinger et al., 1984j}. : .

This paper describes part of the hydropower planning process at
pacific Gas and Electric Company (PG&E). The use of water and power
(simulation) models and a new model employing sampling stochastic
dynamic programming (SSDP) are discussed. Two applications of the
planning models for PG&E's North Fork Feather River hydroelectric
system are presented. '

Hydro Planning at_ PG&E

Figure 1 shows the typical hydropower planning process at PG&E and
the flow of data between various mathematical models. The water and
pover models are designed to simulate the operation and dispatch of
PG&E's hydroelectric facilities. They are used to generate a data base
of long-term average annual generation and dependable capacity for each
powerhouse in the PG&E system. T7his data base is used as part of the
input to the electric production simulation models, such as PROMOD and
UPLAN, which use this information along with data 9gn nonhydro resources
to simulate power production for a particular load forecast and outage
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Figure 1. Typical Hydropower Planning Process
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J’ ;chedule within system constraints. O©One of the outputs of the
production simulation model is the marginal cost of electric
jeneration. These marginal costs are used by both the simulation
nodels and the hydro scheduling model. The schedules developed by the
latter are used to guide the operation and dispatch of powerhouses.

In this planning process, each stage of model runs takes one to
three months. Any update of the existing conditions or significant
changes in the assumptions~~such as oil prices, load forecasts and new
resources--requires a lengthy process before its effects can be
included in the data base. This update process is a substantial,
ongoing effort of the planning department.

dater and Power Models

Over many years, PG&E has developed an extensive library of water
and power models (about 100 programs) for 15 watersheds in northern and
central California. These programs simulate the operation of each
river basin's hydroelectric facilities based on historical streamflow

* jata and the physical characteristics of the reservoirs and
powerhouses. These models are highly detailed to capture regulatory,
operational, contractual, and physical constraints.

one major feature of the water and power models is the ability to
simulate any possible future developments in each watershed. As ,
»lanning tools, the progranms contain not only the existing powerhouses
and reservoirs, but also various system additions being contemplated.
Modification of the water and power models to include new development
vlans is an ongoing effort of the planning department, since
regulations and business opportunities are ever-changing.

Another important feature of the water and power models is the ‘
flexibility of following different generation strategies. Because
wydroelectric generation is seasonal, the models are designed to be
controlled by reservoir rule curves, i.e. target storage levels for the
and of each month. By varying the rule curves, planners can simulate’
i{ifferent generation strategies. ‘

For most planning purposes, it is important to have rule curves
-hat maximize annual power generation or annual benefits.
Jraditionally, the rule curves were developed through a difficult
trial-and-error process. An optimization model could develop the rules
.nstead, in a relatively automated manner.

Sampling Stochastic Dynamic Programming

Kelman et al. (1988) developed a methodology based on sampling -
stochastic dynamic programming (SSDP) for optimizing the reservoir
~peration rule curves. In this method, the objective is to maximize
:xpected energy production or its benefit over a 12-month heorizon. The
decision variable is the release from the reservoir in each stage
(month) while the stateé variables are the storage and hydrologic
‘orecast. The method assumes implicitly that the future streamfiow
‘equence in the basin, from next month to the end of the horizon, will
be exactly equal to a streamflow scenario that has actually occurred in
"he past. A large number M of streamflow scenarios is used to capture
he variability of the streamflow process. When the release decision
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is being made at stage t, the likelihood of sampling any of the
streamflow scenarios, from stage t+l onward, depends on the hydrologic
forecast state variable.

At each stage t and state, a release decision is made by balancing
the expected immediate (in stage t) benefit against the expected future
benefit: ‘ . :

L
Zl Pt(ill) [Bt(Rt,i,k,St+1) + a zlpxt(v|1,i) ft+1(St+l,V,i)]} (1)
- v=

i

= the streamflow scenario index:
v = the hydrologic forecast index;

S¢ the reservoir's storage at stage t, discretized into K values
(knlfooo,K) With St(1)=Smin and St(K}=Smax:
X¢ = the hydrologic forecast at stage t, discretized into L values

(1=1, oo., L)
Py (i]l) = the probability of scenario i at stage t, given forecast

Xe (1)
Ry* = the optimum target release from the reservoir;
Ry = the actual release from the reservoir in month t;
By = the immediate benefit in month t of release Rti :

PXg(v]1l,i) = the transition probability from forecast Xy (1) to forecast
X¢41 (V) in scenario i;

fy4+1 = the future benefit from month t+l to T, the end of the horizon:

a = the monthly financial discount rate. '

Figure 2 shows the tradeoff between the immediate and future benefits
and the selection of the optimal target) release. The actual release is
further constrained by the water balance in the reservoir, with the
storage after release between Spyay, and Spjint

Re = Min [St+Qt“smin‘Et(st:Smin)rMax[st+Qt'5max“Et(Strsmax)rRt*]] (2],

where
0+ = inflow;
Et = evaporation and leakage loss of the reservoir.

After the optimum target release Rt* is determined, the future
benefit for each streamflow scenario is calculated as:
L
ft(stllli’ = Bt(Rt,i,k,St+1) + a zltpxtfvilli)‘ ft+1(5t+l,v,i)] (3}
: V=

With no forecast state variable, equation (3) simplifies to:

ft(St,i) = Bt(Rtlirkfs't:-Fl) + a ft-l-l(st-{-lri) . (4)

The SSDP algorithm is implemented in a FORTRAN program that
essentially consists of several nested DO loops. For each month and
discrete storage state value, discrete target release values are
considered. The end-of-month storage level and expected immediate,
future, and.total benefits are.calculated over all. the streamflow
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scenarios until the largest total benefit is found.

applications of the Models

Two applications of the SSDP model in the rule curve development
for water and power programs will be discussed. The planning models
For PC&EY's North Fork Feather River (NFFR) hydroelectric system in
jorthern California are used to demonstrate the approach. No actual
operations of the system are simulated.

The Feather River system consists of one major reservoir and six
downstream powerhouses, totaling about 660 megawatts of installed
capacity. See Figure 3 of the NFFR watershed. A major uncontrolled
jownstream tributary affects three of the powerhouses. The rule curves
.n the water and power model must be flexible enough to accommodate the
uncontrolled spring runoff and to meet typical summer and autumn
snergy requirements. There are also several downstream water supply
-equirements and water rights issues associated with the river system.
which must be considered in developing the rule curves.

i. Impact of Minimum Storage on the Rule Curve

The SSDP model was used to develop the optimum rule curves for the
;ater and power model using various minimum storage values. The
Jifferent sets of target releases (from which the target storage levels
can be derived) from the SSDP model were then applied in the water and
jower model to determine the average annual generation benefits of the
wdroelectric facilities. The results are shown .in Figure 4.

Also noted in Figure 4 is the point corresponding to the original
-ule curve used in the water and power model. This rule curve was
developed by trial and error. Although the difference in annual
henefits is not substantial, the SSDP model was able to develop a
etter rule in much less time. )

This study indicates that lower minimum storage levels yield
arger benefits (annual generation). The rule curve developed for low
ainimum storage is very aggressive in varyingethe simulated reservoir
levels. This type of operation is thus favoréd on an economic basis.

. Probabilistic Constraints

Operation of hydroelectric systems, howeéver, is not dictated by
.conomics alone. Environmental impacts, aesthetics, safety
considerations, and recreation also must be considered. Since
reservoirs are popular sites for summer water sports, drastic water
evel variations could affect recreation. The application of the
_lanning models to measure the effect of this constraint will be
discussed.

In solving the objective function (1), a compromise between energy
production and the constraint on reservoir level could be reached by
~1lowing the reservoir to drop below a certain level s*, in some
. onth t, given any S¢.3, during a limited number of years. The following
probabilistic constraint could be enforced whenever possible to model
this compromise:
i * : "

J( S¢<8™ | Sg.1 ) £ Db : o (5)
% 6 o Kelman
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Figure 3. The North Fork Feather River Watershed
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Figure 4. Benefit Variation with Minimum Storage
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where b is the maximum allowed chance of viclating the constraint.
(1-b) could be considered the water level reliability. Using this
approach, no bound is actually placed on the unconditional probability
that 54 will be less than s*. Only a policy that avoids such
situations is generated.

In applying the constraint, the SSDP algorithm rejects any
possible target release in stage t-1 for which the frequency of
streamflow scenarios where St)<S* is greater than b. as a result, the
expected annual benefit of energy production varies with b. For
2xample, experimental results of the planning models for the NFFR
system with t=8 and S*=900 TAF, indicate a potential benefit increase
2f about 1% when b=0.3 compared to the results with b=0. Without any
onstraint (b=1), the benefit increase could be as high as 10%,

Conclusion ) .

SSDP is a suitable approach for developing optimal rule curves for
the water and power model. It can capture important characteristics of
« river basin, such as the minimum storage level. Futhermore, it can
‘e used to assess the impact of a probabilistic constraint such as
water level reliability on expected reservoir benefits.
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