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ABSTRAGCT

Dependable hydro capacity has historically been defined determin-
istically as the capacity available in the worst drought on record.
Recently, a probabilistic approach has been suggested which takes into
account all historical water years, be they dry, average or wet,
Taking the probabilistic approach a step further, a Monte Carlo
simulation model can be used to generate synthetic streamflows that
preserve certain parameters of the historical flows, but may include
more extreme droughts and floods.

This paper focuses on the benefits of using synthetic streamflows
(the "synthetic hydrology" approach) for determining a probabilisti-
cally defined dependable hydro capacity, as opposed to using histo-
rical flows only. A three-stage sampling experiment is used to deter-
mine which of the two approaches provides a more precise estimate of
probabilistic dependable capacity in a case study. The case study an-
alyzes the Central Valley Project in California. The results indicate
that there 1z no significant advantage to using the more elaborate
synthetic hydrelogy approach for most hydro reliability levels in this
case. Possible explanations for this result are also offered.

1. INTRODUCTION

Synthetic hydrology, the generation of synthetic streamflows that
preserve certain statistical properties of a set of observed stream-
flows, has been the subject of much work in the hydrological research
literature (see, e.g., Loucks et al., 1981, Salas et al., 1980), and
has occasionally been applied to help solve water resource-related
decision prcolems (Frevert et al., 1986, Pereira et al,, 1984, INTASA,
1981). Literature extolling the benefits of synthetic hydrology has
been available for decades (e.g. Maass et al., 1962). Empirical
studies comparing the benefits of different synthetic hydrology models
are also available (e.g. Klemes & Bulu, 1979, Burges & Lettermaier,
1981, Klemes et al., 198l). However, quantification of the benefits
of synthetic hydrology vs. the use of historical data has been
attempted very rarely (Lenton, 1978, Vogel & Stedinger, 1986).

Lenton (1978) showed that estimation of the mean flow is better
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done without synthetic hydrology. He thus proved wrong the assumption
that synthetic hydrology is always preferable to the use of historical
data only. Vogel & Stedinger (1986) studied the. required storage
capacity to meet a given firm water demand over n consecutive years,
The required storage capacity was defined as the median (over infini-
tely many n-year sequences) maximum cumulative deficit in n consecu-
tive years (CGomide, 19753). Vogel & Stedinger considered two estima-
tors for the required storage capacity:

a) The required storape capacity in n historical years, following
Rippl (1883). The resulting single value provides an estimate of the
median maximum cumulative deficit,

b) The median of M maximum cumulative deficits obtained from M
n-year synthetic flow sequences generated with a synthetic hydrology
model fitted to the historical n-year sequence.

Vogel & Stedinger concluded that (b) has a smaller root-mean-
square errorx than (a), and that there were therefore significant
benefits to the use of synthetic hydrology in this case,

Given Lenton‘s (1978) finding of no benefits for the determination
of mean flows (a measure which is of little interest for reservoir
design or reliability problems) and Vogel & Stedinger’'s (1986) finding
of significant benefits for the determination of required storage
capacity, the question of which problems justify the application of
synthetic hydrology remains unanswered. This paper helps to answer
that question. It employs the same test design suggested by Lenton
(1978) and used by Vogel & Stedinger (1986). However, it applies the
test to a different problem, that of evaluating reservoir reliability
for electric power production. This problem requires an additional
layer of modeling to translate water releases into energy generationm,
and consequently the implementation of the test design becomes more
complex than in the previous two papers. Furthermore, while the
previous papers addressed academic test drta, the results of this
study are of interest in the determination of the dependable hydroel-
ectric capacity of California’'s Central Valley Project.

After a brief summary of synthetic hydrology and its uses in
Section 2, Section 3 introduces the paper’'s case study, Section &
outlines the test employed to evaluate the benefits of synthetic
hydrology. Se:tion 5 presents the results of the test; Section 6
discusses the results and possible implications; and Section 7 pre-
sents conclusions.

2. SYNTHETIC HYDROLOGY AND ITS USES

The modeling of a streamflow time series by a stochastic model to
produce a large number of synthetic traces is usually done in four
stages: model identification, parameter estimation, streamflow gener-
ation, and validation. The four steps are employed in the given
oxder, but with an important feedback loop from validation back to
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model identification. In applications of synthetic hydrology the
generated flows are usually input to a simulation model of the water
resource system being considered. The output of this simulation model
is then used in the evaluation of the system.

Of the four steps of the synthetic hydrology approach, parameter
estimation and streamflow generation are fairly straightforward, al-
though they may require significant computer resources. Model identi-
fication, however, requires significant user input and judgment, since
it aims to select the member of a family of models which is most like-
ly to best represent the underlying process from which the observed
streamflow record was drawn. Selecting the most appropriate set of
models for the different parts of a complex river basin can require
many iterations between model identification and validation. In some
cases, two gquite different models may appear to fit equally well. The
choice of models often has a significant impact on the results of the
simulation model. Therefore, to the extent that the analyst is unsure
whether the model choice is correct, water resource system evaluations
based on synthetic hydrology results could be flawed,

The application of synthetic hydrology can thus require not only
quite a bit of effort, but also a significant amount of statistical
expertise and familiarity with the river basins to be modeled.
Furthermore, it is imperative that the simulation models which usa
streamflows as an input are designed so that they can cope with
synthetic streamflows that may contain droughts and floods more severe
than those observed in the historical record. Many simulation models
are designed around historical data, often with vear-specific rule
curves for reservoir operations, and may therefore be impossible to
run with synthetic streamflows without major modifications. To the
extent that year-specific rule curves are derived using perfect
foresight, such models are also likely to yield biased, overly optim-
lstic results, Thus, the use of synthetic hydrology may require
analysts to redevelop such models, making them more realistic. The
benefits of this improved modeling notwitlstanding, such a redevelop-
ment may constitute a major effort.

A legitimate question is which classes of problems justify the
additional effort associated with the use of synthetic hydrology. For
certain applications synthetic hydrology is a very helpful tool: these
typically occur when the problem to be addressed requires a longer
streamflow racord than is available. Four examples follow.

Example 1: It may be desired to design a system of cascaded
reservolrs for a 100-year planning horxizon, but the available stream-
flow record may contain only 25 years of data. In such a case, the
designer needs synthetic hydrology unless a rule of thumb design
criterion is accepted.

Example 2: Dependable hydroelectric energy production is
traditionally determined through driest period modeling. Under such
an approach, if a hydro plant under study s to be integrated within a
larger hydroelectric system, the driest historical period observed for
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the system is used to evaluate the benefits associated with the new
plant. But during that period, there may have been above-average
flows in the proposed plant’s river, if that river is geographically
remote from the system. Since above-average flows would lead to
above-average energy production, a dependable energy larger than the
mean energy would result, This is a counter-intuitive result. With
synthetic hydrology, the river's dependable encrgy could alternatively
be defined as the mean energy produced by the new plant during many
driest periods of the system within synthetic streamflow traces that
are as long as the historical record (Kelman et al., 1979).

Example 3: Section 1 described the work of Vogel & Stedinger
(1986), who compared estimators of the median of the maximum cumula-
tive deficit in an n-year sequence. There would not be a simple
non-synthetic hydrology-based estimator if the decision criterion were
any quantile of the maximum cumulative deficit other than the median.

Example 4: There is often a need to test operating policies
agalnst a wider range and combination of circumstances than may be
captured by a limited historical record. The use of synthetic hydrol-
ogy can help to prevent tuning an operating policy to the peculiari-
ties of circumstances captured in that limited record.

The above examples describe cases in which synthetic hydrology 1is
needed unless the evaluation criterion itself is changed. In con-
trast, this paper deals with a case in which synthetic hydrology could
be used but ls not necessary, because a long historical streamflow
record is available. Given the substantial costs assocciated with the
application of synthetic hydrology, a quantification of its benefits
is appropriate, ' . :

Synthetic hydrology does not create any additional observed
streamflow data. Therefore its use can only be beneficial because of
the information imbedded in the mathematical model of streamflows used
in the synthetic hydrology approach. The model structures typically
employed can be interpreted as systematic and concise descriptions of
the streamflow properties of many river basins. However, in the
application of synthetic hydrolegy to any particular basin, the
magnitude of this benefit is unknown.

3. THE CENTRaT. VALLEY PROJECT CASE STUDY

California's Central Valley Project (CVP) is an assembly of
federally owned and operated reservoirs, hydro power plants and
irrigation canals. The CVP is contractually integrated with the
Pacific Gas and Electric Company (PG&E), which provides gas and
electric service to most of Northern California, for the purposes of
coordinated electric power generation. The CVP's installed hydrcelec-
tric capacity of over 1800 megawatts (MW) constitutes an important
part of Northern California's power resources.

"Capacity payments" between the federal government and PG4E are
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determined on the basis of the dependable hydroelectric capacity of
the CVP, a possible definition of which is developed below. Since it
generally takes at least five years to build new capacity, the CVp’s
dependable capacity (known as its Project Dependable Capacity or PDC)
is determined with a five year leadtine. Therefore, the random
variables of interest are the monthly capacities of the CVP in the
fiftrh year in the future, given today's reservoir storage volumes,
Let these random variables be denoted Crqs for the months m=1,..,12.
To derive the cumulative distribution functions Fp(cp) of these random
variables, all possible five-year sequences of CVP reservoir inflows
would need to be run through the model that simulates the CVP oper-
ations (called the CVPower model). Assuming that this could be done,
the monthly PDCs could then be defined as a quantile cp(p) - corre-
sponding to probability p - of these distributions:

p=F{cn(p)) or cy(p)=F-1 (p)

(The current integration contract prescribes deterministic, driest
period-based, annual PDCs. The PDC definition used in this study is
being discussed but is currently not implemented.)

The monthly PDCs would provide a measure of the extent to which
the CVP's integration with PG&E’'s electric systenm would increase the
reliability of the integrated CVP-PG&E system, and could become the
basis for the capacity payments between the two parties, which could
amount to tens of millions of dollars per year. Therefore, the PDCs
should be determined as accurately as possible.

However, the true distributions Fmépm) are not known since only a
limited number of five-year sequences of reservoir inflows have been
obsexved: one 83-year sequence of inflows (1895-2977) is available.

The Fu(ey) distributions, and with them the PDCs, can be estimated
from the available historical data either using, or not using, syn-
thetic hydrciogy. Without synthetic hydrelogy, the PDCs can be
estimated in two different ways. First, one could run the CVPower
program using the 16 non-overlapping five-year sequences that can be
extracted from the historical record. This will result in 16 observa-
tions of Cy for m=1,..,12. These observations can be used to
construct the empirical probability distributions micp) (estimates of
the monthly distributions Fyp(ep)), from which estimates Sn(p) of the
monthly PDCz can be constructed.

Alternatively, 79 overlapping five-year flow sequences (without
wrap-around) can be extracted from the historical record and processed
by the CVPower program. This will yield 79 observations of Cp for
m=1,..,12, but due to the overlapping, these observations will not
constitute an independent random sample - they will exhibit high
autocorrelations. These observations can again be used to construct
estimates m{cp) of the distributions Fn{cep), and thus to construct
estimates Gm(p) of the monthly PDCs. This method, which has been
suggested by Anderson et al., 1982 (also see House & Ungvari, 1983,
Labadie et al., 1987), has been used within this paper to represent
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the non-synthetic hydrology-based approach. (This method was tested
against the method using non-overlapping periods, using the same test
that {s discussed later in this paper, and was found to be superior.)

The synthetic hydrology-based approach used here is as follows,
The 83 years of historical streamflow data are used with a synthetic
hydrology program to derive & large number (in this case 200) of
five-year sequences that, run through CVPower, will result in 200
observations of C;, in estimates of the monthly distributions Fm(cm)
and in estimates Lm(p)-r 1m(p) of the monthly PDCs.

Throughout this paper, cn(p) and Fp(cp) are used to represent true
PDCs and distributions, cm(p) and Fy(cy) represent PDCs and
distributions derived using the non-synthetic hydrology-based
approach, and cm(p) and F m(cm) represent PDCs and distributions
derived using the SyﬂthEtlc hydrology-based approach.

4, TESTING THE BENETFITS OF SYNTHETIC HYDROLOGY

For the PDC application, the benefits of synthetic hydrology can
be defined in terms of the root-mean-square errors of the FDC esti-
mates obtained using the synthetic hydrology-based approach
(RMSE[Em(p)], m=1,..,12) and compared to the root-mean-square errors
obtained using the non-synthetic hydrology-based approach
(RMSE[cm(p)], m~}l,..,12). If RFSE[cm(p)}<RMSE[cm(p)] for most m, the
use of synthetic hydrology would be beneficial since the resulting
PDCs would be expected to be closer to‘the true PDCs.

However, the true PDCs and the root-mean-square errors of cm(p)
and cm(p) are unknown, since 'under either approach there is only one
estimate per method for each month. This testing problem can be
addressed through the application of synthetic hydrology on three
different levels, as described bDelow and shown in Figure 1. The first
level is used to define 'true’ flow distributions and FDCs. The
second level generates 20 sequences of .83 years of flows. By inter-
preting each 83-year sequence as a possible 'historical' sequence, one
can obtain 20 PDC estimates based on 'historical’ data only, i.e,
using the non-synthetic hydrology-based approach. At the third level,
synthetic hydrology is applied to each of the 20 second-level ‘'histor-
ical’ sequences, ylelding 20 synthetic hydiclogy-based PDC estimates.
This scheme is described in detail below,

4.1 Parent Model Level (Calculate 'True' PDCs)

The testing scheme starts with a synthetic hydrology model of CVP
reservoir inflows: The SPIGOT model (Grygler & Stedinger, 1987,
Stedinger & Taylor, 1982, Stedinger et al., 1985), a disaggregation-
based synthetic hydrology model, generates annual flows at an ‘aggre-
gate' site and then disaggregates them to monthly aggregate flows,
which can then be further disaggregated to monthly flows at major 'key
sites' and finally at minor ‘control points’ (Grygier & Stedinger,
1987). In order to make test conditions as realistic as possible, the
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best-fitting model choices were used. For example, for the transfor-
mation of annual aggregate flows, which overshadows all other trans-
formations In importance since all other flows are generated through
disaggregation of these flows, a three-parameter lognormal model was
assumed, The mean, standard deviation and skewness of annual aggre-
gate flows are 13.4-109m3. 4.8-109m3, and 0.46, respectively, making
this choice more appropriate than assuming normal or two-parameter
lognormal flows. This model of CVP reservoir inflows will be called
the ’‘parent’ model.

From this parent model, 1000 five-year streamflow sequences were
generated, CVPower was run with each sequence, resulting in 1000
observations of C, for each month m, 12 monthly distributions Falem),
and 12 monthly PDCs cm(p)-F'lm(p). For the purposes of this test,
these PDCs were dsfined to be the true monthly PDCs. Fplcn) (and
later ?m(cm) and Fp(cp)) were defined using piecewise linear
functions, with straight lines connecting the points (em, £(ey)), where
f(cp) is the Weibull plotting position associated with observation Cp-

4.2 child Seq&ence Level (Non-Synthetic Hydrology-Based Approach)

From the same parent model, 20 83-year CVP reservoir inflow
sequences were generated. Let these 20 sequences be called the
‘children’. Each of the 20 83-year child sequences can be regarded as
a set of possible ‘historical’ data. The 83-year sequence actually
observed could have beaen one of the 20 child sequences, and should be
similar to many of them. From each of these 20 children, a set of
monthly estimates eﬁ(p) was obtained using the non-synthetic hydrolo-
gy-based approach: 79 overlapping five-year sequences were extracted
from each 83-year child sequence, CVPower ‘was run with each of these
five-year sequences, and the .79 sets of output from CVPower were used
to generate a set of monthly ?ﬁ(cm) estimates of the fifth year CVP
capacity distributions. The 20 sets of monthly estimates Gm(p) were
then determined from ﬁm(p)-?'lm(p). From these estimates, the PDC
estimate variances Var[@m(p)], biages Bias[em(p)} and root-mean-square
errors RMSE[éh(p)], m-1,..,12, were computed.

4.3 Grandchild Sequence Level (Synthetic Hydrology-Based Approach)

Just as one has the option to apply synthetie hydrology to the
actually observed 83-year sequence, one caxn also interpret each of the
20 child sequences as & possible 'historical’ sequence and apply
synthetic hydrology. From each child sequence, 200 separate five-year
sequences called the 'grandchildren’ were generated. The GVPower
program was then run with these 20 sets of 200 five-year inflow
sequences, resulting in 20 sets of monthly Fm(cn) estimates of the
fifth year CVP capacity distributions, From these distributions, 20
sets of monthly estimates Sﬁ(p)-F'lm(p), and the corresponding PDC
variances Var[Eﬁ(p)], biases Bias([¥,(p)] and root-mean-square errors
RMSE[gh(p)], me}l,..,12, were obtained.

Each of the 20 83-year child sequences input to the SPIGOT syn-
thetic hydrology model results in 20 sets of parameters that are
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similar but not equal to the parsmeters of the parent model, since for
instance the sample mean of a generated 83-year sequence is not
necessarily equal to the mean in the parent model. Such differences
between child sequence parameters and parent model parameters would
have been even more pronounced if SPIGOT's option to include parameter
uncertainty had been used (see, e.g., Vicens et al., 1975, Davis,
1977, Mcleod and Hipel, 1978, Damazio and Kelman, 1981, Stedinger et
al., 1985). This was not done for the following reason.

The use of parameter uncertainty in synthetic hydrology attempts
to account for the unknown bias introduced through the assunption that
the population parameters equal the sample parameters of the observed
streamflows. Not knowing whether this bias is positive or negative,
synthetic hydrology models must assume that it could be either way,
and generate parameters both smaller and larger than those observed.
Because the resultant derived distribution of capacity reflects both
the natural variability of streamflows and the parameter uncertainty,
it yields biased (more conservative) quantile estimates, especially in
the tails, of the distribution of capacity which reflects only the
natural streamflow variability (Stedinger, 1983).

In many applications of synthetic hydrology, this effect is
desirable, since it coincides with traditional risk-averse engineering
practice, in which underdesign is considered worse than overdesign.
For the test described above, however, the inclusion of parameter
uncertainty in the generation of the grandchild sequences would
decrease the value of ?'lm(p) for small p for every grandchild
sequence, thus decreasing the G&(p) estimates for small p for every
grandchild sequence and introducing a negative bias into these esti-
mates. This would invalidate the use of the RMSE as a compar%sgn .
criterion between the two approaches (recall that RMSE= VBias4+Var ).

For similar reasons, the uncertainty in the choice of a model to
describe flows within SPIGOT was ignored: the same model that was used
to generate the child sequences was adopted for the generation of the
grandchild sequences. This is equivalent to assuming perfect knowl-
edge that nature's true distribution of flows belongs to a certain
parametric family in the generation of ecach grandchild sequence. Al-
though it 1s conceivable that a ‘wrong model’, with fewer parameters,
could in some cases do a better job, this perfect knowledge assumption
removes one possible source of error in thc synthetic hydrology-based
approach, and probably makes the resulting EDC estimates more precise.

5. RESULTS

Tables la-le provide the results of the test for five distinct
levels of p (0.02, 0.05, 0.1, 0.2, and 0.5). Means, standard devia-
tions (S.D.), biases and root-mean-square errors (RMSE) of the monthly
PDC estimates are given. For each level of p, first the 'true’ c(p)
are shown, followed by the statistics for the non-synthetic hydrology-
based €(p) and the statistics for the synthetic hydrology-based T(p).
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It would have been preferable to analyze more than 20 child
sequences, in order to increase the precision of the estimates given
in Table 1. For example, for p=0.02, a two standard deviation-wide
confidence interval for the standard deviation of the synthetic
hydrology-based annual PDC {is approximately (37 MW, 90 MW), while the
point estimate is 69 MW. However, the consideration of more child
sequences would have been computationally prohibitive, and was also
unnecessaxy for the conclusions drawn from the results.

Table 2 summarizes the results given in Table 1, noting by measure
and value of p how many times each approach was superior, i.e. had a
smaller S.D., blas or RMSE. The first number indicates how many times
out of 13 (12 monthly PDCs plus annual average PDC) the synthetic
hydrology-based approach was superior; the second number indicates how
many times the non-synthetic hydrology-based approach was superior,
The two numbers may not sum to 13 if neither approach was superior in
some months. '

IABLE 2
Number of Times SH Superior : Number of Times Non-SH Superior
D 0.02 0.05 0.10 0.20 0.50 ALl
S.D. 9 : 4]10: 3 6 : 7 5: 6 2 7 32 ¢ 27
Bias 8 : 5 9 : 4 2: 9 7: 5 5: 44 31 . 28
RMSE 7 : 6 9 : 4 4 : 8 3 : 8 22 7125 ¢ 34
All 26 ;15 |1 28 : 11 {12 : 25 ) 15 : 19 9 : 18 | 88 : 89

Table 3 provides further summary information: it contains the RMSE
of the synthetic hydrology-based and the non-synthetic hydrology-based
annuzl PDCs, both scaled by the 'true’ PDE for the five values of p.

TABLE 3
Normalized RMSE of Es;imated Annuasl PDC
SH RMSE Non-SH RMSE
P True PDC True PDC
0.02 0.105 0.091
0.05 0.060 0.082
0.10 0.047 0.043
0.20 0.037 0.037
0.50 0.031 0.030

It can be seen from Tables 1 through 3 that neither of the two
approaches is clearly superior to the other, although for very low
levels of p, the synthetic hydrology-based approach appears to he
slightly superior (see Table 2). The Smirnov two-sample test was
applied for all monthi m and all values of p in order to check the
null hypothesis that Cy(p) and C,(p) have the same underlying
population distribution., In no case could the null hypothesis be
rejected at a five percent significance level.

A more accurate comparison would have been possible if more than
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20 child sequences had been used. However, the goal of the test was
not to obtain a precise measure of any possibly cxisting difference in
RMSE between the two approaches. Rather, it was sufficient to learn
that if indeed there is a difference, the difference must be small.

6. DISCUSSION

This section discusses the test results given above. Three issues
will be addressed.

(1) The non-synthetic hydrology-based annual average fifth year
capacities exhibited significant lag-1 autocorrelations due to the
dependence introduced through the overlapping. These autocorrelations
varied from child sequence to child sequence, ranging from 0.21 to
0.53, and averaging 0.3%9, Because of the absence of any such autocor-
relation in the grandchildren, one might have expected an advantage to
the synthetic hydrology-based approach. However, the test results
suggest that even such autocorrelation did not lead to a significant
advantage for the synthetic hydrolegy-based approach,

(11) Going beyond the data-based conclusion that neither of the
two approaches is clearly superior in this case study, it is next
possible to speculate under which conditions a synthetic hydrology-
based approach might be superior, and thus offer ideas for future
research. It can be seen from Tables 1 through 3 that any future
search for benefits of the synthetic hydrology-based approach should
concentrate on small values of p, for which the test results show some
benefits of synthetic hydrology. Such benefits could be due to the
tails of ﬁﬁ(cm) containing very few data goints from which to
interpolate the desired low quantiles.

The possible superiority of synthetic hydrology at low levels of p
concurs with the findings of Vogel & Stedinger (1986), who reported
that the use of synthetic hydrology "leads to much more precise
estimates" of the required storage capacity of a reservoir given a
50-year flow record. Required reservoir storage capacity is a func-
tion of the severity of the worst drought within a flow sequence, It
is thus a measure akin to the PDC corresponding to a very low p. 1In
fact, for values of p smaller than 1/80, there is no alternative to
the synthetic hydrology-based approach, unless one fits a parametric
distribution to Fg(cy).

The possible benefits associated with the use of synthetic hydrol-
ogy appear to be based on the extent to which the actual application
requires an accurate definition of the tail quantiles of the random
variable of interest. The value of using synthetic hydrolegy would
therefore depend on two conditions. First, it must be difficult to
define the tails of the distribution of the variable of interest
directly from the available observations of this variable. This could
be the case, for example, when the relationship between streamflows
and the variable of interest is highly nonlinear. If this relation-
ship is linear, additional synthetic low-flow values may not provide
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more information about the distributicn of the variable of interest
than interpolations between the observed values of that varieble,
Second, the streanflow model used in the synthetic hydrology approach
must produce rare events with correct probabilities. (This condition
must in fact be fulfilled in any application of synthetic hydrolegy.)

(111) Fipgure 2 shows the relationship between streamflows (the
fifth year apggregate annual CVP reservoir inflows) and the variable of
interest (the fifth year annual capacity ¢a) for this case study, for
200 synthetic five year sequences generated with the parent model.

The correlation between flows and ¢y i5 0.88. The figure shows that
the relationship between ths two variables 15 almost linear, even in
the range of very low flows. (In the renge of very high flows, the
curve flattens out because €y is bounded by the installed generating
capacity.) Given point (ii) above, this linearity could poszibly have
led one to expect that the synthetic hydrology-based approach would
not be superior to the nen-synthetic hydrology-based approach for the
estimation of c,(p). Similarly, nonlinearities in the flow-c,,
relationships for m~6,.,,9 at p=0.05 correspond to some superiority of
the synthetic hydrology approach for the estimation of en(G.03) for
these months,

FIFTH YEAR CVP CAPACITIES

¥ L1 1 1 L
FIFTH YEAR AGGREGATE CVP RESERVOIR INFLOWS

Figure 2: Central Valley Project Flow-Capacity Relationship
7. CONCLUSION

This paper has described an experiment to evaluate the benefits of
using synthetic hydrology, as opposed to using historical data only,
for determining reliability-based dependable electric generating
capacity levels for California’s Central Valley Project. The exper-
iment showed that there is no significant advantage to using the
synthetic hydrology-based approach for most hydro reliability levels.
The test results were sufficient to conlude that if in fact one of the
approaches is superior, the difference is of small practical impor-
tance for the application studied in this paper. Because the non-
synthetic hydrology-based approach is much simpler to implement, it is
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therefore difficult to justify the use of synthetie hydrology in this
particular case. No clcim is made that this is a general result. As
mentioned in Section 2, there are irportant problems for whose solu-
tion synthetic hydrolegy is needed. However, our results show that
there is no reason to assume that a synthetic hydrology-based approach
will always be preferable to simpler solutions.
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