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'INTRODUCTION

‘operation studies of a hydroelectric system. For example, a
‘generdtion expansion plan must meet some reliability con-
straints (risk of deficit or expected energy not supplied) that
are usually estimated by the simulation of system operauon
\¥i'ovér.a large number of generated sequences. An ‘‘inade-
By quate“ streamflow model tends to distort these indices and
‘thus affects the decision making.
W‘ Tha purpose of this paper is to describe the development
o ‘& monthly streamflow mode! for the Brazitian hydroelec-
tric. system. The adopted model is based on the disaggrega-
tion' of, ‘anuual flows into monthly values. The work is
orgamzed in three main parts; (1) theoretical and practical
aspects of model development, (2) criteria for assessing the
adequacy of a model, and (3) economic effect of modei
election. The first part describes the multivariate annual
'generation scheme, based on the autoregressive model and
the 'seasonal disaggregation of annual values. Problems
- discussed include the addition of new stations, nonparamet-
ric representation of marginal distributions, spatial correla-
tion, and correction of negative flows,

‘ jTHé,‘SECOI'ld part concerns the development of criteria for
5o COmpating alternative streamflow models. The adequacy of
-4 model is evaluated on the basis of statistical properties that
are considered relevant for power systems planning. A case
study ' itustrates the application of these criteria.
<54, The last part tries to assess' the practical implications in
ERTI ; ‘terms'of system reliability when different streamfiow models

..~ are used, A planning study with the Brazilian hydroelectric

. system is used {o estimate investment differences resulting

*: from the use of alternative streamflow models,

rvoirs . with large storage volumes, which gives it multiyear
regulation capability, Monthly time steps are adopted for
lanning and operation studies. Since the dams are arranged
in ‘cascade along the tivers, it is possible to model either the
total. flows arriving at each site or the incremental flows

@
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This paper describes the development of a monthly streamflow model for the Brazilian hydroelectric
system. The model is based on the disaggregation of lag | autoregressive annual flows into monthly
values. Model features include addition of new sites, nonparametric generation of monthly flows, and

' correction of negative values, A methodology for assessing model adequacy is described and applied in
- & ¢age study comparing the proposed mode! and a multivariate monthly autoregressive model, The
economic effect of model selection is illustrated in a realistic generation planning case study: it is
shown that investment differences resulting from the application of different models may reach US §!1

)

corresponding to the drainage area limited by this site and
upstream stations. This last option is presently recommend-
ed for planning studies of the Brazilian hydroelectric system
[Costa er al., 19811,

The adopted streamflow generation scheme can be sum-
marized as follows.

1. A three-parameter lognormal distribution is fitted 10
the incremental annual flows,

2. The annual process (logarithms of annual flows) is
generated in a moltivariate manner,

3. The annual process is exponentiated to produce annu-
al Aows.

4, The annual flows are disaggregated on a unisite basis
into monthly flows.

5. Negative monthly flows are corrected.

6. A summation of incremental monthly flows along the
cascades is performed to obtain total flows.

Representation of the Annual Marginal
Distribution

A three-parameter lognormal distribution is fitted to the
annual flow X, Consequently, W = In (X — o) — p' is
normally distributed with zero mean and standard deviation
of ¢'. Parameters a, &', and o’ are estimated to preserve the
moments of the flows, although other estimation procedures
could be used (Stedinger [1980] compares several estimation
options). Parameters are calculated through the following
relations [Charbeneaun, 19781

= (In (¢N'?
= In [a/(d(¢ — 1))"] (0
a=p— of(d — P
where p and o represent the mean and standard deviation of
the annual flows, ¢ is the (only) real root of the equation ¢
+ 3¢? ~ (4 + v = 0, and v is the skewness coefficient of the
annual flows, If the sample skewness coefficient turns out to

be negative, a normal distribution is fitted to the annual flow
X.

Annual Generation Scheme

Annual flows are generated by a multivariate autoregres-
sive lag 1 mode! of the type described by Matalas [1967]:

W, = FW,., + HV, (2)

B
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where X, represents the flow during year ¢ (minus its mean) and ¥,

W, n-dimensional vector related to the annual Nows as
deseribed in the previous section:
V, n-dimensional vector of vesiduals (standardized in-
dependent vaniables):
F, I n X n malrices:
1 number of stations.

Foand [T are estimated o prescrve the lag O and tag |
correlations between the stations [Matalas, 1967], However,
planning studics usually reguire the joint simulation of the
existing hydroclectric system with the new plants being
added. The comparison of expansion alternalives is made
easier if it is possible to produce synthetic streamilows only
to the new sites under consideration. while the generated
flows 1o the existing siles remain unchanged.

The Matalas model was then extended to preserve the lag
0 and lag 1 spatial correlation between the new series and the
previously generated sequences for & stream siles:

W, = FW, , + GR, -+ HV, 3
where W, F, and V, are as described previously, R, is a k-
dimensional vector of zero mean normal variables previous-
ly gencrated for the A stream sites by (2), and Gisan X &
matrix. Applying £ ) and Cov () to {3}, we obtain
"
EWAW, , = w, R =n=1FG] [ ] {4)
r
Cov (W, WIW, | = w. R, =) = {{ Cov(V,, VMI' = HII'
(5)

Given that W, and R, are multivariate normally distributed
and that Cov (W,. W,) is equal to Cov (W, ., W, ) (that is,
the stationarity hypothesis), the conditioned moments can
be devived and #. G, and Jf can then be caleulated as the
solution of

(F G| = [Cov (W, W,.3 Cov (W, R))

Cov (W, W) Cov(W,_ . R} | ©)
Cov (R,. W, |) Cov (R, R)

HiP = Cov (W,, Wy — I G

Cov (W, W) :| n
Cov (R,. W)

Equation (6) can be solved by partition of the inverse and
(7) by spectral decompaosition of the right-hand side.
The Seasonal Disaggregarion Model

Disaggregation models in hydrology were first suggested
by Valencia and Schaake [1973). The VS (Valencia-
Schanke) model can he described as

Y, = AX, + CV, (8)

where

Y, R-dimensional column vector of zero mean;

X, scalar of zeve mean:

V, 1ldimensional column vector of residuals {indepen-
deat standardized random variables);

A 12 X | matrix;

C 12 X 1] matrix,

the monthly flows for the same year (minus their means). A
and C are such that the covariance matrices S, and §,, are
preserved, that is, are equal to the historical sample matrices
S, and $,,. It can also be shown that

DA = DC =0 (9

where B = [1/12 1/12 -+
vector.

The above properties ensure that the disaggregated
monthly values ¥ always add up exactly to the given annual
value X. This is easily seen by multiplying both sides of (8)
by D, which results in

1/12] is a 12-dimensional row

DY, = X, (10)

In the originat reference, € was represented as a 12 X 12
matrix €, calculated as the solntion of

CC' =M ()

where M is a [2 x 12 matrix oblained from historical
covariance matrices.

Equation (11) can be solved by spectral decomposition of
M, that is,

C=pPan a2

where P is the 12 X 12 eigenvector matrix of M and A is the
12 x 12 diagonal matrix of eigenvalues, ordered in decreas-
ing magnitude. However, the fact that DC = 0 implies that ¢
has rank 11 anc thus that the last eigenvalue Ay is aull. lo
this case the last column of C in (12) is equal to zero and
should be dropped. The solution of (11} is then rewritten as a
12 % 11 matrix C, defined as

C = P2 (13)

where P is the 12 x 1| matrix of eigenvectors (last column
dropped) and A is the 11 x U1 diagonal matrix of nonzero
eigenvalues.

Although the ¥S model has many interesting properties,
the representation of links between the years is not accurate,
In other wotds, the VS model is not able to preserve the
colrelation between December of one year and January of
the following year [Mejia and Rousselle, 1976). The VS
model also introduces an odd correlation between mounths of
dillerent years. Kelman et al. [1979) have shown that

E(Yt.!yr._l) o E( Y},;'Y.r.‘,-) V ) 'fé T V.f“j = I, 2, vy, 12
(14)

I other words. the V8 model implies that the covariance
between December of year ¢ and January of year ¢ + 1 (1-
month lag) is equal to the covariance between January of
year { and December of year ¢ + 1 (23-month lag).

In order to improve the interannual representation, Mejia -

and Rowselle [1976) introduced the following extension in
the VS model:

Y, = AX, 1 BZ, + CV, (15}

where ¥,, X;. V,, A, and C are as in (8), Z, is a p-dimensional
vector of zero mean, and B is a 12 X p matrix. Z, represents
the last p streamfows of the previous year 7 — 1. According
to Mejia and Rouselie, A, B, and C are such that matrices
Sio0 Size Sy and 8, are preserved, thus providing a correct
representation of the link between years. However, Kefman

T || |
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Fig. 1. Nonparametric generation of monthly flows for o historical record of M years.

et al. [1979] and Lane [1980] have independently pointed out
that S,,, 5.2, Suy, and Sy, are not preserved when A, B, and ¢
are calculated as suggested by the MR (Mcjia and Rouselle)
formulation. Kelman et ai. derived an analytical expression
for estimating the resulting Sy, and S, when p = 1. The
article by Lane presents a procedure for correcting A, B, and
C so as to make §,, equal to $,, at the expense of ...

Experience with the analytical expression indicated that
disturbances are in general much smaller than parameter
uncertainty | Kelman et al., 1979). Therefore no correction
schemes were used in the adopted model.,

Alfthough the VS and MR schemes can be easily extended
to the n-stations case, handling of the resulting arvays is very
uncomfortable, The adopted model restricts the multisite
generation to the annual level, that is, the annual Rows are
generated by the multivariate scheme described previously
and the monthly values are obtained for each station sepa-
rately, using the MR scheme for p = 1,

Represemtation of the Monthly
Marginal Distribution

Kelman er al. 11979] and Todini [1980] have independently
shown that the skew coefficients of the monthly flows can be
expressed as linear functions of the skewness of X, (the
annual flow) and of V,, the vector of standardized residuals.
These relations are used to calculate the skew coeflicients of
V. 50 as fo incorporate any specified skewness in the
seasonal flows,

Experiments with several streamflow series have shown
that in order to preserve the historical skew coeflicients i 1s
often necessary to generate residuals with very high skew
values (¥ > 30). Similar values were found by Todini [ 1980}
for the Nile river, However, experience with synthetic
traces has also shown that the sample moments of these
highty skewed residuals may be distorted.

For this reason a nonparametric approach in which residu-
als V, are generated from the empirical cumulative distribu-
tion of historical residuals ¥, was developed. The monthly
marginal distribution is thus represented indirectly by means
of the residuals. The calenlation of these residuals proceeds
as follows:

From (15) the historical residuals V, can be written as the
solution of

P -

CV, =Y, ~ AX, — BZ, (16)

Since C is 12 x |1, the least squares solution of (16) is
given by

V, = C'(V, ~ AX, - BZ) an

where C' is a 11 X 12 matrix called the pseudoinverse of C.

Since C has rank 11, C7 is obtained as

C = O (18)
By substituting (13) into (18} and noting that eigenvectors are
orthonormal, the caleulation is simplified 1o

Cl = U\”Z Pl P;\!.!l)fl Cw = A-'] C-: (]9)

The final expression for the residuals is obtained by substj-
tuting (19) into (17):

V=2 OfY - AX, - BZ) (20)
Residuals are generated by sumpling indices for cach compo-
nent of the historical residual vectors. Figure | illustrates the
process for a historical sample of m years. In the figure, V,,
represents the ith component of the historical residual vector
imyear? (f = 1,2, -, 1;7=1,2, -+ -, m). This residual is
indexed by I;, which is sampled from a uniform distribution.
Independent sampling of indices 7y, f5, + + -, f;; produces a
complete residual vector V. Therefore there wili be (m)'!
different residual vectors, which is a large “population,”
given typical historical record lengths of s = 30 to 50 years.
One frequent question concerning the use of nonparamet-
ric generatton schemes is whether it is possible 10 geneente
flows that ar¢ higher or lower than those fouad in the
historical record. The answer in this case is casily seen to be
positive. In fact, about half of the synthetic sequences used
in the case study discussed Tater on in this paper presented
flows that were beyond the range of historical values.

Representation of Seasonal Cross Corvelation

If the disaggregation of annual values is done separately
for each station, the only “source’ of seasonal cross corre-
lation in {15) comes {rom the annual value X,. As a conse-
quence, monthly cross correlation tends to be smaller than
shown in historical recards, However, with the nonparamet-
tic approach it is possible 0 geneiste cross-correlited
residuals V, and thus significantly improve the represema-
tion of spatial dependence of monthly flows.

The implementation of this improvement is very casy:
when generating streamflows for station { for a given year 1,
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it is only necessary to use the same indices [y, f, - -
« that were previously sampled for station & for the same year

.7, not the historical residual values, which will vary from

preserve the spatial dependence between each component of
, the cross correlation between flows,

. Itis also interesting to note that in actual generation it is
. not even necessary to record the sequence of sampled I; one
" only needs to store the initial “‘seed’” of the pseudorandom
" number generator which produced that sequence and repro-
". duce it when needed. In this way, multivariate correlation
b can be represented without affecting the “‘univariate” char-
" acter of the disaggregation process.

. Correction af Negative Flows

During disaggregation of anaual values, it is possible to
generate negative monthly flows. This is a common problem
in cascaded systems, where incremental flows can be rela-
tively small.

A computational scheme was then developed in which the
consequences of eliminating negative flows are attenuated
by redistributing the correction throughout the year. The
scheme involves the solution of the following problem:

@

Min ﬁ (¥ = Y)¥e?

i=l

=0

T T
APR  MAY e
o ‘}Fig.;l. - Monthly means for Furnas,
O ITh
¢. It should be noted that only the indices are the same but
station to station. It can be seen that this scheme will’

the resicual vectors and thus improve the representation of

T T
pUm AUG

where - ¢ L

Y* . corrected flow;
"Y; * generated flow; )
'g-; . monthly standard dev1atlon ;

The objective function correspond§ to a wexghwd-
squares minimization; the inequality constraints’ impose the -
nonnegativity of the incremental flows; the equality. c?&%f;é%gg
straint preserves the yearly total. A very efficient’ solqtupj:g }%‘;
algorithm is described by, Lawson and Hansan [1
165-167). s
The application of the correction scheme may’ aﬁect the
moments of the generated samples. One can see’ that the
flows in the “‘wet”
affected due to the Wenghtmg factors. -

yw’_\ < n

i+, L k2

An useful streamflow model should preserve ;mpogta
features of the “‘real” stochastic process In practice,’ th

naturally reflect the requxremcnts of the proposed appll 2a7

ki

tion. In the case of expansion planning for power gcngratlo 3

penods time and space correlation between the ﬂows to.the
vanous reservoirs, accumulated’ mﬂow to the ¥ se ouf

it



PEREIRA ET al.: STocHAsTIC FLow MODELS

2400 |
2200 _
2000 -
1800 .|
1500 |
1400 |
1200 ]
1000

800

600
1

HISTORICAL
MODEL 1
MODEL 2

400 |

200

1
o

[~
JAN

T R B
APR MA

Fig. 3.

T T
FEB MAR JUN

lyzed, it is useless to compare the historical and generated
means: one knows beforchand that they wili be preserved,
Such a comparison should only be used to verify the
computer program and not to validate the model [Sredinger
and Tayfor, 1982].

In practice, however, moments are verified in search of
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inconsistencies or deviations. For example, monthly means
and variances of incremental ffows are parameters of the
maode] and should thus be exactly preserved, On the othey
hand, variance of total Hows depend on the spatial covari-
ance between incrementad flows upstream of each site. Since
this spatiul covariance is only indirectly represented jn the
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Monthly standard deviations for Furnas,
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. nonparametric approach, variance of total flows is not
-+, expected to be exactly reproduced. It should also be remem-
bered that the correction of negative flows may affect the
moments of the gencrated sequences and that covariance
. matrices Sy, and S,; are not exactly preserved,

The selection of the relevant random variables is a com-
plex matter. The subject was discussed with engineers from
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Fig. 6. Monthly autocorrelations for Furnas.
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distributions obtained from the historical record and the
ones obtained from generated samples.

The maxima of these variables are also relevant to energy
planning. The critical period, for example, corresponds to
the worst hydrological situation in the histovical record. The
importance of maximum values is particularly relevant for
systems with large storage capacity. These systems are
insensitive to the smaller short-term perturbations.

Maximum values can be computed for each generated
sample of the same length as the historical record, Since the
historical record itself produces only one maximum value,
the adequacy of the model is measured by the proportion of
generated values smaller or bigger than the historical, A very

— T T T T T -
JUL AUG SEP [s]vi NOV DET MONTHS

Monthly autocorrelations for P, Colombia,

small proportion indicates that the model may be inade-
quate, since it ‘“‘considers” the historical sample as an
atypical realization of the stochastic process.

One variable, the maximum deficit, was selected as the
most relevant to generation expansion planning, The maxi-
mum deficit variable represents the minimum reservoir
stofage necessary 10 meet a prestablished regulated outflow
g* for a given streamflow sequence [Gomide, 1978). It is
easy to see that the maximum deficit is directly related to the
representation of the worst drought in the period.

Experience has shown that the maximum run sum, run
length, and intensity are highly correlated with the maximum
deficit, that is, the additional information brought by these
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Fig. 8. Goodness of fit test between the bistorical and generated cumulative distributions (A is the maximum
difference between the empirical probability distribution of the historical and generated samples) for Furnas.
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indices was small [Costa ef al., 1981]. For this reason, and

o for the sake of simplicity, they were not included in the case -
* - study discussed in the following section, . . "

B Application of Assessment Criteria:
A Case Study :

. The application of the criteria for adequacy assessment
- will be illustrated in a case study with two cascaded stream-

sites in Rio Grande, Brazil: Furnas and Porto Colombia, We
" generated 25 samples of 40 years each, corresponding to the
* historical record, for the two stations, using two alternative
. models: the adopted streamflow model (M) and a seasonal
autoregressive model (M5). In this model, each monthly fiow
has a two-parameter lognormal distributlionr:

- W i .
In(Yiar,) = pevi” + 0/ g‘:Tl(ln (Y. — w')
5 i
+ oy (E = p:”')”znm.; (22)
here
Y;, inflow for month {, year f;

i indexes the months, equal to i, 2, L 2ii+ 1 =
13impliessi + 1 = I

t indexes the years, equal to 1,2, + + +

- ' monthly mean of inflow logarithms;
o  monthly standard deviation of inflow logarithms;
A’ monthly autocorrelation coefficient of inflow loga-
T rithms;
M+t Sstandardized residual.

" More details about parameter estimation and multivariaie
. generation scheme can be found, for example, in works by
- Maralas [1967] and Salazar et al. {19771,

cerns the preservation of sample moments, ' Figures 2
through 7 show the monthly means, standard deviations, and

torical record and from the synthetic samples produced by

The verification phase of the assessment procedure con-

lag one autocorrelation coefficients estimated from the his- -

..considered equally good in all these aspects.

“r

;,, both models. Figures 8 and 9 show the results of goodness of -

“security, since model M, would tend to produce less sevqre :
e

R f
A 0‘.5

fit tests between the hlstorlcal and synthetic cumulatw £
distributions. The performance of both M| and Mz c’

The validation phase starts with goodness of ﬁt tests ‘
the run sum, run length, and average intensity statistics.’ Th‘ :
results are summarized in Table | and indicate that baths
models are very adequate with regard to these variables.

However, a sharp difference appears in the calculation jof =
the maximum deficit variable; It can be seen in Table 2, hag{v i
about half of the values produged by model M, arg, highe
than the historical. Since the maximum -deficig is* closel :
related to the worst drought in the period, this means: thg o
half of the sequences generated by M, produced more seVere
droughts than found in the historical record. Model, Mz;;@u{
the other hand, considers the historical drought as'a‘¥ery;
unlikely event, since none of the 25 values obtained from,w '
generated sequences exceeded the historical one. %3/

In terms of model choice, the above results indicate- that'
model M shouid be preferred to Mj. This choice also favors

> ,1

droughts than those found in the historical record. ] . B
The differences observed in themaximum deﬁcnt tests -
seem surprising, given the equally good performance of both
models in the previous tests. A partial explanation can: bc &
found by looking at the annual moments of the gencgate 3
sequences. a J;é‘%??.ff ¢ &
It was verified that the annual standard de\uatlon and
autocorrelation produced by M; were smaller" than ;h f*
historical values, as can be seen in Table 3, As. a co
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TABLE |. Goodness of Fit Tests For Run Sum, Run Length, and Run Intensity
Run Sum, 107 A Run Length, months Run Intensity, (0* MYmonth
. Source of Standard Standard . Stundard
Station Data Mean Deviation a Mean Deviation X Mean Deviation A
Furnas Historical 3.0 6.7 4.8 7.2 0.4 0.4
records
M, 2.9 5.2 0.06 4.3 5.0 8.0 0.5 0.5 0.10
M, 3.0 4.3 2 4.9 5.2 5.3 0.5 0.4 0.10
P, Colombia Historical 3.7 8.7 4.4 6.7 0.6 0.5
records
M, 38 7.6 .09 4.6 59 37 0.6 0.6 0.08
M, 3.6 5.3 10 4.5 4.9 2.0 0.6 0.5 010

significance Jevel is 9.49,

THE EcoNoMIc EFFECT OF STREAMFLOW
MopEeL CHOICE

It has been argued in the literature [Klemes et al., 1981)
that the maximum deficit index tends to ‘“‘inflate” the
differences between alternative streamflow models. in other
words, models that would be very different in terms of
required capacity for a fixed reliability turn out to be very
similar when viewed in terms of reliability for a fixed
capacity. Since this last measure is what really matters in
practical terms, the actual impact of model choice in plan-
ning could thus be very reduced.

However, one of the main conclusions of our experience
with the application of sireamflow models is thal model
choice does have practicnl fmplications in terms of system

TABLE 2. Calculation of Maximum Deficit For Furnas and P.
Colomhia

Number of

Maximum Deficit, A
Sequences

10° m? ; )
Regulated With Values
; outflow, % Source of Standard Above His-
E of mean Data Mean Deviation torical
b Furnas Statien
X 70% historical 11.3
3 records
: M, 15,2 7.9 15
: M, 7.8 1.3 none
5% historical 17.4
i records
; M, 18.9 10.3 13
) M, 10.4 2.1 none
80% historical 23.8
records '
M, 23.6 12.9 1
M [3.7 29 noneg
P. Colombia Station
70% historical 16.2
records
M, 18.2 9.8 14
M- 9.1 1.6 none
75% historical 24.8
records
M, 234 13.1 10
M, 12.4 14 none
86% historical RER
records
M, 30.1 17.0 10
M, 16.8 37 none

A is the maximum difference between the empirical probability distributions of the historical and generated samples. Fan the above cases,
the critical values of the two-sample Smienov test for the Furnas and P. Colombia stations are 0.192 and 0.184, respectively (5% sigmficance
tevel), The x* measures the goodness of fit between two diserete distributions (multinomial test). The critical value for the nbove cases at 5%

reliability and planning investments. This will be iltustrated
with an example in generation planning.

The generation reliability problem is te evaluate the ability
of a system to supply the load demand, taking into account
load fluctuations and random equipment outages. In genera-
tion systems that are predominantly hydro, the limits on the
peak capacity of the hydro plants have two differenl causes:
(1) loss of head due to reservoir depletion and (2) equipment
outages.

The loss of head effect is particularly severe in the
Brazilian generation system, where 90% of the generation
comes from hydro units. For example, the loss of available
power due to reservoir depletion in the South/Southeast
hydro subsystem planned {or 1987 may reach 5000 MW,
about 12056 of the total installed capacity ot -10,000 MW, For
other systems this loss may may go to up to 20%. Random
equipment outages, in turn, reduce the number of working
units in a given period, thus decreasing even more the
system generating capacity, ‘

The probabilistic evaluation of power deficits in a hydro-
system therefore requires a specific methodology that takes
into account the joint effect of reservoir depletion and
equipment outage. This methodology is described in detail
by Cunira et al. [1982] and is illustrated in Figure 10.

The system data includes the detailed description of the
hydroelectric plants in the system (configuration, the inflow
sequences arriving in each period to each reservoir {inflow
sequences) and information about the system depletion
policy such as priorities and rule curves (operating rules).
The load mode! represents the monthly load duration curves
discretized into equiprobable intervals, The system opera-

TABLE 3. Annual Standard Deviation and Lag One
Autocorrelation For Furnas and 17, Colombia

Annual
51D DEY Annual Auto-
Source of Dala (m*s) correlation

Furnas Stution

Historical records 238 .33
M, 238 0.37
M, 218 0.1t
. Colombia Stafion g
Historical records 333 0.41
M, 337 0.44
M, 276 0.13
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Fig. 10. Methodology for reliability evaluation in a hydroelectric system. oL

o

tion is then simulated in order to calculate the available unit
output capacity of each plant in each month for a given
streamflow sequence. The simulation is repeated for many
sequences, thus producing samples of the multivariate prob-
ability distribution of unit output capacities.

MOEIRAD DAS LAGES
RIVER

(%7 S

GRANDE RIVER

AA RIVER
JAQUARE AIVER

PARANAIRA AIVER

TRES MAAIAY

A0 FRANCISCO
AWVER

QU ANHAES
omnmm
HAVANTES
i
RIVER A
P, REAL JACUI ITAUBA
P FUNDO
P. FUNDO
RIVER
JOUAGU MVER
v/ E FARDIA
. VLo PANTSWITH  Z
RESERVOIR o 2. 3ANTIAGD
3.030n10
O.. RUN=OF~THE ;

RIVER PLANTS

Fig. 11.

Schematic representation of the South/Southeast Hy- -
" droelectric System. Note that run of the river plants may have large

**. reservoirs which are usually not depleted due to the operation rules. - ‘mstalled capacity of 39, 464 MW 1s adequate to supply a peal

"Y\r\'ﬁ-,‘“)\fév‘;f &%

The available unit capacntles m each sample i are then

to produce the conditioned system generating capacity G,
The condltioned loss of load probabillty (CLOLP) is deﬁned
as IR :

where L is the monthly load and G; is the system generatmg
capacity given the ith sample For H equ1probable samp[es<

1
LOLP iy CLOLPi L

\”,M‘y :

In generation expansion planning the system mstalled
capacity is determined by the target LOLP va.lues, whic
give a measure of the desired system reliability, Sin¢e LOL "
evaluation involves the simulation of the sysiem operation
over many streamflow sequences, the difference betWeeﬁ
streamflow models may be measured in practice by th -
diﬁ‘erence in the resulting LOLP values. ERR :

uration corresponds to the south and southeast regions,
where the main Joad centers are located. Total: mstalled

load in the Brazilian system does not present significant;
seasonal variations For this reason, momhly load distribu

using monthly data from the two different streamflow quel
discussed in the previous case study. Table 5 shows th

model M. This indicates that reservoir levels are highe
when simulation uses streamflow sequences from-model M

The reliability levels coming out of the M simulation
correspond roughiy to the target levels used in actual plan

e
ning, In other words, if M, is the ‘“‘correct”

model;’ the‘ :
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TABLE 4, Plant Data For The South/Southeast Systems

Storage Average Nominal Outage
Capacity, Mean In- Head, Power, Number Rate,

Name 10° m? flow, m%/s m MW of Units %
Camargos 792 134 23 45 2 1.3
Itutinga 12 134 29 50 3 1.3
Furnas 23000 912 86 1280 8 1.3
P Peixoto 4080 1013 43 477 10 1.3
Estreito 1340 1033 63 1104 6 1.3
Jaguara 450 1044 44 680 6 1.3
V. Grande 2150 1127 26 400 4 1.3
P, Colombia 1450 1257 24 320 4 1.3
Graminha 555 52 93 80 2 1.3
E. Cunha 14 85 88 108 4 1.3
Limoeiro 25 85 23 28 2 1.3
Marimbondo 6150 1714 6l 1440 8 1.3
A. Vermetha 11000 1929 53 1380 6 1.3
Emborcagao 17946 431 127 1040 4 1.3
[tumbiara 17027 1515 Bl 2100 6 2.0
C. Dourada 660 1580 32 443 8 1.3
5. Simao 12500 2241 66 1608 6 1.3
B. Bonita Jie0 295 20 140 4 1.3
Bariri 344 329 23 143 3 1.3
Ibitinga 985 401 19 131 3 1.3
Promissiio 7400 509 26 264 3 1.3
R. Barbosa 2700 581 29 00 3 1.3
I. Solteira 21166 4962 45 3200 20 1.3
Jupid 3680 5737 22 1414 14 1.3
Jurumirim 6520 193 32 98 2 1.3
Xavantes 8705 256 72 416 4 1.3
L. N, Garcez 48 380 17 70 4 [.3
Capivara 10570 912 45 640 4 1.3
Itaipu 29000 9040 119 12600 18 2.0
F. Areia 5945 520 125 1251 3 2.0
8. Santiago 6750 878 96 1332 4 2.0
S. Osério 1275 926 67 1050 6 1.3
P. Fundo 1560 48 244 220 2 1.3
P. Real 3646 181 40 140 2 1.3
Jacui 29 18! 23 168 6 1.3
Itauba 620 259 90 500 4 1.3
Capivari Cachoeira 179 17 740 250 4 1.3
Cubatao 3t 97 690 870 14 1.3
Jaguari 1238 32 53 28 2 1.3
Paraibuna 4740 72 81 88 2 1.3
Funil/Paraiba 870 227 70 216 3 1.3
I. Pombos 8 603 3 164 5 1.3
N. Peganha 3 160 31 378 6 1.3
Lages 601 17 314 142 10 1.3
P. Coberta 22 17 37 96 P 1.3
Sto. Grande 78 178 89 104 4 1.3
Mascarenhas 39 969 17 120 3 1.3
Trés Marias 19180 1453 47 388 6 1.3

load of 37,000 MW at a mean risk of 3.8 x 107% (0,28
h/month).

On the other hand, if M, is a more adequate representation
of the streamflow process, it will be necessary to increase
the installed capacity to reach the target LOLP values. The
additional capacity necessary can be roughly estimated as
follows: by iterative calculations, it is possible to determine
that the maximum peak load that can be supplied by model
M, at a risk fevel of 3.8 x 10~%is 34,500 MW. Therefore the

reserve capacity requirements associated with M, are

39464 — 34500

34500

~ 14%

189

Assuming that the same percentage reserve is required to
meet a load of 37,000 MW, the extra installed capacity would

be

1.14 x 37000 — 39464 = 2716 MW

TABLE 5. Monthly LOLP Values For The South/Southeast Systems

I.oss of Load Probability (1.OLP), 10 *

Model Jan. Feb, March April May June July Aug. Sept. Oct. Nov. Dec.
M, 60.3 384 21.9 [17.8 205 233 274 356 43.8 54.8 63.0 658
M, 36 3.0 2.7 2.7 2.7 3.0 3.6 4.1 4.9 5.5 5.2 4.4

Scale is 1074,
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Given typical investment costs of US $0.35 million per MW
of installed peak capacity, the 2716 MW represent US $950
million of extra investment. This value gives a measure of
the practical impact of model choice in planning. It should be
stressed that in actual planning the investment decision is
much more complex and might even result in a change of the
target reliability levels, The point to be made is that signifi-
cant amounts of money may or may not be invested as a
consequence of streamflow model choice.

CONCLUSIONS

The development of a stochastic streamflow model com-
prises many aspects, ranging from the analysis of the theo-
retical properties of the model to practical problems such as
how to avoid the generation of negative inflows or how to
handle the addition of new streamilow sites of interest, Since
there is no standard way of treating these problems, a
“customized' solution rather than an “*off the shelf’' model
had to be developed and tested.

Efficient model-selection procedures are essential for the

I'successful application of stochastic models in planning stud-
ies. The adopted validation scheme was able to show sharp
differences between models that were apparently very simi-
lar. A realistic case study of generation planning indicates
that mode! choice has very important practical implications
both in terms of system reliability and investment decisions.
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